$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\lim_{n \to \infty}\bracks{H_{n} - \ln\pars{n}} & =
\lim_{n \to \infty}\braces{\sum_{k = 1}^{n}{1 \over k} +
\bracks{\ln\pars{1 \over 2} + \ln\pars{2 \over 3} + \cdots + \ln\pars{n - 1 \over n}}}
\\[5mm] & =
\lim_{n \to \infty}\braces{1 +
\sum_{k = 2}^{n}\bracks{{1 \over k} + \ln\pars{k - 1 \over k}}}
\\[5mm] & =
\lim_{n \to \infty}\bracks{1 +
\sum_{k = 2}^{n}\int_{0}^{1}\pars{{1 \over k} + {1 \over t - k}}\,\dd t}
\\[5mm] & =
1 + \int_{0}^{1}\sum_{k = 0}^{\infty}
\pars{{1 \over k + 2} - {1 \over k + 2 - t}}\,\dd t
= 1 + \int_{0}^{1}\pars{H_{1 - t} - H_{1}}\,\dd t
\\[5mm] & =
\int_{0}^{1}H_{1 - t}\,\dd t =
\int_{0}^{1}\bracks{-\,\totald{\ln\pars{\Gamma\pars{2 - t}}}{t} + \gamma}\,\dd t
= \bbx{\gamma}
\end{align}