I'm a high school student in Korea.
I am preparing for a presentation. so I prove an approximate expression about totient summatory function , but I'm not sure that the proof is correct.
If the proof is incorrect , please tell me what is incorrect.
The following is the proof :
(Prove $ \Phi \left ( x \right ) \sim \frac{x^{2}}{2\zeta \left ( 2 \right )}$)
$\Phi \left ( x \right )= \sum_{k<x}\varphi \left ( k \right ) = \sum_{dm<x}m\mu (d)$
$=\sum_{d<x}\mu\left ( d \right )\sum_{m<x/d}m$
$=\sum_{d<x}\mu\left ( d \right ) \cdot \frac{1}{2} \cdot (\left [ \frac{x}{d} \right ]^{2} + \left [ \frac{x}{d} \right ] )$
$\sum_{d<x}\mu\left ( d \right )\left [\frac{x}{d} \right ] = 1 $ so $\Phi \left ( x \right ) - \frac{1}{2} = \sum_{d<x}\mu\left ( d \right ) \cdot \frac{1}{2} \cdot \left [ \frac{x}{d} \right ]^{2} $
$\mu\left ( d \right )\frac{1}{2}(\frac{x^{2} - 2xd + d^{2} }{d^{2}}) < \mu\left ( d \right )\frac{1}{2}\left [ \frac{x}{d} \right ]^{2} < \mu\left ( d \right )\frac{1}{2}(\frac{x^{2} }{d^{2}}) $
(because $\frac{x}{d} - 1 < \left [ \frac{x}{d} \right ] \leq \frac{x}{d}$)
so
$\sum_{d<x}\mu\left ( d \right )\cdot\frac{1}{2}\cdot(\frac{x^{2} - 2xd + d^{2} }{d^{2}}) <\Phi \left ( x \right ) - \frac{1}{2} < \sum_{d<x}\mu\left ( d \right )\cdot\frac{1}{2}\cdot\frac{x^{2} }{d^{2}} $
$\Rightarrow \frac{x^{2}}{2}\sum_{d<x}\frac{\mu\left ( d \right )}{d^{2}} - x \sum_{d<x}\frac{\mu\left ( d \right ) }{d} + \frac{1}{2} \sum_{d<x} \mu \left ( d \right ) <\Phi \left ( x \right ) <\frac{x^{2}}{2}\sum_{d<x}\frac{\mu\left ( d \right )}{d^{2}} $
we know $ \left | \sum_{d<x}\frac{\mu\left ( d \right ) }{d} \right |\leq 1$ and $\sum_{k=1}^{\infty}\frac{\mu \left ( s \right )}{n^{-s}} = \frac{1}{\zeta \left ( s \right )}$
Finally,
$\lim_{x->\infty }\frac{\Phi \left ( x \right )}{x^{2}} = \frac{1}{2\zeta \left ( 2 \right )} $
$\Rightarrow \Phi \left ( x \right ) \sim \frac{x^{2}}{2\zeta \left ( 2 \right )}$