Solve $$\sqrt{3+\sqrt{3+x}}=x$$
My try:
$$\sqrt{3+\sqrt{3+x}}=x \\ 3+\sqrt{3+x}=x^2\\\sqrt{3+x}=x^2-3\\3+x=(x^2-3)^2$$
$$x^4-6x^2+9=x+3\\x^4-6x^2-x+6=0$$
Now ?
Solve $$\sqrt{3+\sqrt{3+x}}=x$$
My try:
$$\sqrt{3+\sqrt{3+x}}=x \\ 3+\sqrt{3+x}=x^2\\\sqrt{3+x}=x^2-3\\3+x=(x^2-3)^2$$
$$x^4-6x^2+9=x+3\\x^4-6x^2-x+6=0$$
Now ?
There is no need to deal with any quartic equation in $x$. The key is the function on LHS $x \mapsto \sqrt{ 3 + \sqrt{3+x}}$ is a composition of the map $x \mapsto \sqrt{3+x}$ with itself.
The map $x \mapsto \sqrt{3+x}$ is strictly increasing whenever it is defined (i.e $x \ge -3$)
If $\sqrt{3+x} > x$, then $\sqrt{3 + \sqrt{3+x}} > \sqrt{3+x} > x$.
If $\sqrt{3+x} < x$, then $\sqrt{3 + \sqrt{3+x}} < \sqrt{3+x} < x$.
If we want $\sqrt{3 + \sqrt{3+x}} = x$, we need $\sqrt{3+x} = x$. This leads to $$x^2 = 3 + x \iff x^2- x - 3 = 0 \implies x = \frac{1 \pm \sqrt{13}}{2}$$
Since $x = \sqrt{3 + \sqrt{3 + x}}$ is supposed to be non-negative, $x = \frac{1 + \sqrt{13}}{2}$ is the only possible solution (and it does work).
$$\sqrt{3+x}=x^2-3$$ $$3+x=(x^2-3)^2$$ $$x^4 -6x^2 +9 -x - 3=x^4 -6x^2-x+6=0$$ $$(x-1)(x+2)(x^2-x-3)=0$$
None of $1, -2, \frac{1-\sqrt{13}}{2}$ are not answers, due to our double-squaring. Basically, we need the following inequalities to be true:
$$x+3 \ge 0$$ $$x\ge 0$$ $$\sqrt{3+x} = x^2 - 3 \ge 0$$
Thus $x \ge \sqrt{3}$, and $x=\frac{1+\sqrt{13}}{2}$
First state the conditions that $x$ has to satisfy:
We have to factorize $x^4 - 6x^2 - x + 6 = 0.$
We would observe that the values of x would be $1,-2,\frac{1±\sqrt{13}}{2}$.