3

Solve $$\sqrt{3+\sqrt{3+x}}=x$$

My try:

$$\sqrt{3+\sqrt{3+x}}=x \\ 3+\sqrt{3+x}=x^2\\\sqrt{3+x}=x^2-3\\3+x=(x^2-3)^2$$

$$x^4-6x^2+9=x+3\\x^4-6x^2-x+6=0$$

Now ?

Almot1960
  • 4,782
  • 16
  • 38

4 Answers4

6

There is no need to deal with any quartic equation in $x$. The key is the function on LHS $x \mapsto \sqrt{ 3 + \sqrt{3+x}}$ is a composition of the map $x \mapsto \sqrt{3+x}$ with itself.

The map $x \mapsto \sqrt{3+x}$ is strictly increasing whenever it is defined (i.e $x \ge -3$)

If $\sqrt{3+x} > x$, then $\sqrt{3 + \sqrt{3+x}} > \sqrt{3+x} > x$.

If $\sqrt{3+x} < x$, then $\sqrt{3 + \sqrt{3+x}} < \sqrt{3+x} < x$.

If we want $\sqrt{3 + \sqrt{3+x}} = x$, we need $\sqrt{3+x} = x$. This leads to $$x^2 = 3 + x \iff x^2- x - 3 = 0 \implies x = \frac{1 \pm \sqrt{13}}{2}$$

Since $x = \sqrt{3 + \sqrt{3 + x}}$ is supposed to be non-negative, $x = \frac{1 + \sqrt{13}}{2}$ is the only possible solution (and it does work).

achille hui
  • 122,701
3

$$\sqrt{3+x}=x^2-3$$ $$3+x=(x^2-3)^2$$ $$x^4 -6x^2 +9 -x - 3=x^4 -6x^2-x+6=0$$ $$(x-1)(x+2)(x^2-x-3)=0$$

None of $1, -2, \frac{1-\sqrt{13}}{2}$ are not answers, due to our double-squaring. Basically, we need the following inequalities to be true:

$$x+3 \ge 0$$ $$x\ge 0$$ $$\sqrt{3+x} = x^2 - 3 \ge 0$$

Thus $x \ge \sqrt{3}$, and $x=\frac{1+\sqrt{13}}{2}$

Jay Zha
  • 7,792
3

First state the conditions that $x$ has to satisfy:

  • The initial equation requires $x\ge 0$.
  • $\sqrt{3+x}=x^2-3$ requires $x^2\ge 3$, i.e., taking into account the previous condition, $x\ge \sqrt3$. The resulting equation is easy to factorise: rewrite it as \begin{align} x^4-x-6x^2+6&=x(x^3-1)-6(x^2-1)=(x-1)\bigl(x(x^2+x+1)-6(x+1)\bigr)\\&=(x-1)(x^3+x^2-5x-6). \end{align} One tests the existence of rational roots for the second factor, among $\pm1, \pm2,\pm3,\pm6$, one finds $-2$, so dividing by $x+2$: $$x^4-x-6x^2+6=(x-1)(x+2)(x^2-x-3).$$ Set $p(x)=x^2-x-3$. Its discriminant is $\Delta=13$. As $p(\sqrt 3)=-\sqrt 3<0$, $\sqrt 3$ separates the roots, so the only root $\ge\sqrt3$ is $$x=\frac{1+\sqrt{13}}2.$$
Bernard
  • 175,478
1

We have to factorize $x^4 - 6x^2 - x + 6 = 0.$

We would observe that the values of x would be $1,-2,\frac{1±\sqrt{13}}{2}$.

Haran
  • 9,717
  • 1
  • 13
  • 47