I'm trying to prove that $$\lim_{t\to\infty}\frac{R_t^{(\nu)}}{t}=0 \quad \text{ a.s}$$ where $R_t^{(\nu)}$ is a Bessel process of order $\nu$. According to my source we obtain this directly from knowing that $$R^{(\nu)}\sim\{Z_t:t\geq0\}$$ where $$Z(t):=\begin{cases} 0, &t=0\\ tR^{(\nu)}\left(\frac{1}{t}\right), &t>0. \end{cases}$$
I just don't see how I'm suposed to do that. I'm using this definition for Bessel processes:$$R^{(n)}_t = \sqrt{(W^{(1)}_t)^2+(W^{(2)}_t)^2+\ldots+(W^{(n)}_t)^2},\quad t\geq 0$$ where $\nu:=n/2-1$ and $W^{(i)}_t$ are Wiener processes/Brownian motions.