Find $\tan x$ if $$x=\arctan(2 \tan^2x)-\frac{1}{2}\arcsin\left(\frac{3\sin2x}{5+4\cos 2x}\right) \tag{1}$$
First i converted $$\frac{3 \sin 2x}{5+4 \cos 2x}=\frac{6 \tan x}{9+\tan^2 x}$$
So
$$\arcsin\left( \frac{6 \tan x}{9+\tan^2x}\right)=\arctan \left( \frac{6 \tan x}{9-\tan^2x}\right)$$ Now using above result $(1)$ can be written as
$$2x=2 \arctan(2 \tan^2 x)-\arctan \left( \frac{6 \tan x}{9-\tan^2x}\right) \tag{2}$$
But $$2\arctan (\theta)=\arctan \left(\frac{2 \theta}{1-\theta^2}\right)$$
So $(2)$ becomes
$$2x=\arctan \left(\frac{4 \tan^2x}{1-4 \tan^4x}\right)-\arctan \left( \frac{6 \tan x}{9-\tan^2x}\right)$$
Now using $$\arctan(a)-\arctan(b)=\arctan\left(\frac{a-b}{1+ab}\right)$$ i am getting a sixth degree polynomial in $\tan x$.
is there any better approach?