when considering the Riemann integral, I've seen
$f\geq 0$ continuous and $\int_a^b f=0$ implies $f=0$ everywhere on $[a,b]$
proved by considering the contrapositive here but am curious about proving it directly. Does the following work?
Let $\left( \mathcal{U}{\int}_a^b \right)$ denote the upper Reimann integral and $U(f,P)$ the upper sums of $f$ wrt partition $P$. Since $f$ is integrable with $\int_a^b f(x) \mathrm dx = 0$, we have \begin{align*} 0 = \int_a^b f(x) \mathrm dx = \left( \mathcal{U}{\int}_a^b \right) f(x) \mathrm dx &= \left( \mathcal{U}{\int}_a^b \right) |{f(x)}| \mathrm dx \\ &\geq \bigg \lvert \left( \mathcal{U}{\int}_a^b \right) f(x) \mathrm dx \bigg \rvert = \bigg \lvert \inf_{P\in\mathcal{P}} U(f,P) \bigg \rvert \\ &= \bigg \lvert \inf_{P\in\mathcal{P}} \sum_{i=0}^n \sup_{[x_{i},x_{i+1}]} f \times (x_{i+1}-x_i) \bigg \rvert \end{align*} Now note that in the last expression we can choose $(x_{i+1}-x_i) > 0$ for $x_{i+1}\neq x_i$, so $\sup f \leq 0$, but by assumption we have $f \geq 0$, so we must have $f \equiv 0$ in $[a,b]$.