I'm not sure if I'm mistaken: but my notes say the following.
A scalar field $f$ is radial if $f({\textbf{x}}) = \phi ( ||{\textbf{x}}||)$ for some $\phi : [0,\infty) \rightarrow \mathbb{R}$.
I understand this definition, but then it goes on to say:
$$\nabla f({\textbf{x}}) = \phi ' (||{\textbf{x}}||) \frac{{\textbf{x}}}{||{\textbf{x}}||}$$ is radial. I don't see how I can pick a function $g$ say that will show that $$\nabla f({\textbf{x}}) = g(||{\textbf{x}}||).$$