Prove by induction that
$$ \sin(x) +\sin(3x) +...+ \sin [(2n-1)x]= \frac{1-\cos(2nx)}{2\sin x}$$ with $n \geq 1$
- Testing n=1:
$$\sin(x)= \frac {1-\cos(2x)}{2\sin(x)}$$
$$2\sin^2(x)=1-\cos(2x)$$
$$2\sin^2(x)=1-[\cos^2(x)-\sin^2(x)]$$
$$\sin^2(x)=1-\cos^2(x)$$
$$\sin^2(x)+\cos^2(x) =1$$
It shows that n=1 yields a true identity (Pythagorean identity)
Let's assume that $P_n$ is true: $$\ sin(x) +\sin(3x) +...+ \sin [(2n-1)x]= \frac{1-\cos(2nx)}{2\sin x}$$
Let's consider adding $\sin(2n+1)x$ to $P_n$:
$$ \sin(x) +\sin(3x) +...+ \sin (2n-1)x+ \sin(2n+1)x= \frac{1-\cos(2nx)}{2\sin x} + \sin(2n+1)x$$
Considering the RHS: $$\frac{1-\cos(2nx)}{2\sin x} + \sin (2n+1)x$$ $$\frac{1-\cos(2nx)+ \sin(2n+1)x \cdot 2\sin x}{2 \sin x}$$ $$\frac{1-\cos(2nx)+ 2[\sin(2n+1)x \cdot sin x]}{2sinx}$$ $$\frac{1-\cos(2nx)+ 2 \cdot \frac{1}{2} [\cos[(2n+1)x-x]-\cos[(2n+1)x+x]]}{2\sin x}$$ $$\frac{1-\cos(2nx)+ \cos(2nx)-\cos(2n+2)x}{2\sin x}$$ $$\frac{1-\cos(2n+2)x}{2\sin x}$$
It follows that $$\sin(x) +\sin(3x) +...+ \sin [(2(n+1)-1)x]= \frac{1-\cos(2(n+1)x)}{2\sin x}$$
Therefore, $$ \sin(x) +\sin(3x) +...+ \sin [(2n-1)x]= \frac{1-\cos(2nx)}{2\sin x}$$ is true
Any input is much appreciated.