Find the limit
$$\lim_{x\to 0} \left\lfloor \dfrac{\tan 2x}{\sin x} \right\rfloor $$
My try:
$$ \tan 2x =\dfrac{\sin 2x}{\cos 2x}$$
$$\sin 2x =2\cos x\sin x$$
So: $$\dfrac{\tan 2x}{\sin x}=\dfrac{2\cos x}{\cos 2x}$$
So:
$$\lim_{x\to 0} \left\lfloor \dfrac{\tan 2x}{\sin x} \right\rfloor= \lim_{x\to 0}\left\lfloor\dfrac{2\cos x}{\cos 2x}\right\rfloor $$
Now what?