Prove that $$\cos \frac{2\pi}{2n+1}+\cos \frac{4\pi}{2n+1}+\cos \frac{6\pi}{2n+1}+...+\cos \frac{2n\pi}{2n+1}=\frac{-1}{2}$$
My attempt,
Let an equation $x^{2n+1}-1=0$, which has roots $$\cos \frac{2\pi}{2n+1}+i \sin \frac{2\pi}{2n+1}, \cos \frac{4\pi}{2n+1}+i \sin \frac{4\pi}{2n+1},...,\cos \frac{4n\pi}{2n+1}+i \sin \frac{4n\pi}{2n+1}$$
$$(1+\cos \frac{2\pi}{2n+1}+\cos \frac{4\pi}{2n+1}+...+\cos \frac{4n\pi}{2n+1})+(\sin \frac{2\pi}{2n+1}+\sin \frac{4\pi}{2n+1}+...+\sin \frac{4n\pi}{2n+1})i=0$$
$$\cos \frac{2\pi}{2n+1}+ \cos \frac{4\pi}{2n+1}+...+ \cos \frac{4n\pi}{2n+1}=-1$$
Since $$\cos \frac{2\pi}{2n+1}=\cos \frac{4n\pi}{2n+1}$$
$$\cos \frac{4\pi}{2n+1}=\cos \frac{(4n-2)\pi}{2n+1}$$
So, $$2(\cos \frac{2\pi}{2n+1}+\cos \frac{4\pi}{2n+1}+...+ \cos \frac{2n\pi}{2n+1})=-1$$
which proves that $$\cos \frac{2\pi}{2n+1}+\cos \frac{4\pi}{2n+1}+\cos \frac{6\pi}{2n+1}+...+\cos \frac{2n\pi}{2n+1}=\frac{-1}{2}$$
My question: Is my attempt with using complex number too tedious and long? Is there another way to solve this question?
