HINT: Let $\mathcal{B} = \{ B \in \mathcal{F} : B \cap A \in \sigma_A(\mathcal{C} \cap A)\}$, and show that $\mathcal B = \mathcal F$.
Note first that $\mathcal{C} \subset \mathcal{B}$. Since $\mathcal{F}$ and $\sigma_A(\mathcal{C} \cap A)$ are both $\sigma$-fields, it's straightforward to show that $\mathcal B$ is a $\sigma$-field. But since $\mathcal{B}$ is a $\sigma$-field with $\mathcal C \subset\mathcal{B}$, we must have $\mathcal{F} = \sigma(C) \subset \mathcal{B}$; we also have that $\mathcal B \subset \mathcal F$ by definition, thereby showing that $\mathcal B = \mathcal F$. Finally, by definition of $\mathcal B$, we have that $\mathcal B \cap A \subset \sigma_A(\mathcal C \cap A)$. Since $\mathcal B = \mathcal F$, this is shows $\mathcal F \cap A \subset \sigma_A(\mathcal C \cap A)$.
The reverse inclusion is immediate: since $\mathcal C \subset \mathcal F$, we have $\sigma_A(\mathcal C \cap A) \subset \sigma_A(\mathcal F \cap A) = \mathcal F \cap A$.
EDIT: How to show that $\mathcal{B}$ is a $\sigma$-field:
Since $\Omega \in \mathcal{F}$ and $\Omega \cap A = A \in \sigma_A(\mathcal{C} \cap A)$, we also have $\Omega \in \mathcal{B}$.
Let $E \in \mathcal{B}$. Then $E \in \mathcal{F} \implies \Omega \setminus E \in \mathcal{F}$. Similarly, $E \cap A \in \sigma_A(\mathcal{C} \cap A) \implies A \setminus (E \cap A) \in \sigma_A(\mathcal{C} \cap A)$. But $A \setminus (E \cap A) = \{x \in A : x \notin E\} = (\Omega \setminus E) \cap A$. Thus $\Omega \setminus E \in \mathcal{B}$.
Let $\{E_i\}_{i = 1}^\infty \subset \mathcal{B}$. Then $$\{E_i\}_{i=1}^\infty \subset \mathcal{F} \implies \bigcup\limits_{i} E_i \in \mathcal{F}.$$
Similarly, we have $$\{E_i \cap A\}_{i = 1}^\infty \subset \sigma_A(\mathcal{C} \cap A) \implies \bigcup\limits_{i} (E_i \cap A) \in \sigma_A(\mathcal{C} \cap A).$$ Since $\bigcup_i (E_i \cap A) = (\bigcup_i E_i) \cap A$, this implies that $\bigcup_i E_i \in \mathcal{B}$, thereby completing the proof.