1

What is the exact value of$$\sum_{n=1}^\infty \frac{1}{2^n-1}$$ if it exists?

Sahiba Arora
  • 10,847
Nimish
  • 691

2 Answers2

0

https://www.wolframalpha.com/input/?i=sum+(2%5En-1)%5E-1+from+1+to+infty

It's about 1.6067, no exact value

Akababa
  • 3,109
0

Hint. $$ \frac{1}{2^n-1}=\frac{1}{2^n}\cdot\frac{1}{1-2^{-n}}=\frac{1}{2^n}\sum_{k=0}^\infty \frac{1}{2^{kn}}=\sum_{k=1}^\infty \frac{1}{2^{kn}}. $$ Hence $$ \sum_{n=1}^\infty\frac{1}{2^n-1}=\sum_{n=1}^\infty\sum_{k=1}^\infty\frac{1}{2^{kn}}=\sum_{m=1}^\infty\frac{f(m)}{2^m}, $$ where $f(m)$ is the number of divisors of $m$.