What is the exact value of$$\sum_{n=1}^\infty \frac{1}{2^n-1}$$ if it exists?
Asked
Active
Viewed 91 times
1
-
1Here's a tutorial in MathJax – Sahiba Arora Jun 08 '17 at 17:45
-
Why shouldn't the exact value exist? – Jack D'Aurizio Jun 08 '17 at 19:38
2 Answers
0
https://www.wolframalpha.com/input/?i=sum+(2%5En-1)%5E-1+from+1+to+infty
It's about 1.6067, no exact value
Akababa
- 3,109
0
Hint. $$ \frac{1}{2^n-1}=\frac{1}{2^n}\cdot\frac{1}{1-2^{-n}}=\frac{1}{2^n}\sum_{k=0}^\infty \frac{1}{2^{kn}}=\sum_{k=1}^\infty \frac{1}{2^{kn}}. $$ Hence $$ \sum_{n=1}^\infty\frac{1}{2^n-1}=\sum_{n=1}^\infty\sum_{k=1}^\infty\frac{1}{2^{kn}}=\sum_{m=1}^\infty\frac{f(m)}{2^m}, $$ where $f(m)$ is the number of divisors of $m$.
Yiorgos S. Smyrlis
- 83,933