2

Given a sequence of positive numbers $(x_n)$ with $\lim x_n=\alpha$ show that $$\lim\sqrt[n]{x_1x_2\dots x_n}=\alpha$$

I'm not sure about how to proof it, but if each $x_n\to\alpha$ then $x_1 x_2\dots x_n\to a^n$ so $$\lim\sqrt[n]{x_1 x_2\dots x_n}=\sqrt[n]{a^n}=a$$

How I can proof it?

Roland
  • 3,165
  • 1
    your intuition is right, try proving it using epsilons and deltas – mdave16 Jun 11 '17 at 22:51
  • https://math.stackexchange.com/questions/770959/if-x-n-to-x-then-sqrtnx-1x-2-cdots-x-n-to-x?rq=1; This actually appears on "Related" part on the right... – user160738 Jun 11 '17 at 22:54

1 Answers1

3

Cesàro mean theorem gives that if $\{\alpha_n\}_{n\geq 1}$ is a real sequence converging to $A$ and for every $n\geq 1$ we have $\beta_n=\frac{\alpha_1+\ldots+\alpha_n}{n}$, then $\{\beta_n\}_{n\geq 1}$ is a real sequence converging to $A$, too.

So you just have to consider $\alpha_n=\log x_n$ and derive from $\alpha_n\to \log\alpha$ that $$ \beta_n = \log\sqrt[n]{x_1\cdot x_2\cdots x_n} \to \log\alpha, $$ hence $\sqrt[n]{x_1\cdot x_2\cdots x_n}\to \alpha$ by exponentiating back.

Jack D'Aurizio
  • 353,855