Given a sequence of positive numbers $(x_n)$ with $\lim x_n=\alpha$ show that $$\lim\sqrt[n]{x_1x_2\dots x_n}=\alpha$$
I'm not sure about how to proof it, but if each $x_n\to\alpha$ then $x_1 x_2\dots x_n\to a^n$ so $$\lim\sqrt[n]{x_1 x_2\dots x_n}=\sqrt[n]{a^n}=a$$
How I can proof it?