Tui a sequence $(a_n)$ defined for all natural numbers given by $$a_1 =1, 2a_{n+1}a_n = 4a_n + 3a_{n+1}, \forall n \geq 1$$
Find the closed formula for the sequence and hence find the limit. Here, what I have done: $$2a_{n+1}a_n = 4a_n + 3a_{n+1} \implies a_{n+1} = \frac{4a_n} {2a_n - 3} \implies a_{n+1} = \frac{\frac{4a_n} {a_n} } {\frac{2a_n}{a_n} - \frac{3} {a_n} } \implies a_{n+1} = \frac{4} {2 - \frac{3} {a_n} } \implies \frac{1 } {a_{n+1}} = \frac{2 - \frac{3} {a_n} } {4} \implies \frac{1 } {a_{n+1}} =\frac{1 } {2 } - \frac{3} {4a_n}$$ Then go to where????