8

I have found the following way to prove some(Wieferich's) criterion for Fermat's Last Theorem and am wondering what would be wrong. My point of doubt is calculation of the Fermat-quotients of $y,z$ being $-1$, since I found these rules on Wikipedia.

Also, should I split this in parts? I can imagine people don't feel like going through too much text.

Anyway, have fun!

Theorem:

Let:

$ \quad \quad \quad \quad p$ be an odd prime,

$ \quad \quad \quad \quad \gcd(x,y,z) = 1$,

$ \quad \quad \quad \quad xyz \not \equiv 0 \pmod p$

If:

$ \quad \quad \quad \quad x^p = y^p + z^p$,

then $p$ is Wieferich-prime.

Proof:

Consider the following congruence:

$ \quad \quad \quad \quad (x^n - y^n)/(x - y) \equiv nx^{n - 1} \pmod {x - y}$

which we can prove by induction on $n$ and in which we divide first.

Let $n = p$.

Since:

$ \quad \quad \quad \quad \gcd(x - y,(x^p - y^p)/(x - y))$

$ \quad \quad \quad \quad = \gcd(x - y,px^{p - 1})$

$ \quad \quad \quad \quad = \gcd(x - y,p)$

$ \quad \quad \quad \quad = \gcd(x - z,p)$

$ \quad \quad \quad \quad = 1$,

it follows that:

$ \quad \quad \quad \quad x - y = r^p$,

$ \quad \quad \quad \quad (x^p - y^p)/(x - y) = s^p$,

$ \quad \quad \quad \quad x - z = t^p$,

$ \quad \quad \quad \quad (x^p - z^p)/(x - z) = u^p$,

$ \quad \quad \quad \quad rs = z$,

$ \quad \quad \quad \quad tu = y$,

for some $r,s,t,u$ with $\gcd(r,s) = \gcd(t,u) = 1$.

The following also holds for $x - z,t,u$:

$ \quad \quad \quad \quad s \equiv 1 \pmod p \implies s^p \equiv 1 \pmod {p^2}$

Now let:

$ \quad \quad \quad \quad s^p = px^{p - 1} \pmod {x - y}$

$ \quad \quad \quad \quad \implies s^p = px^{p - 1} + ar^p \equiv 1 \pmod {p^2}$, for some $a$

$ \quad \quad \quad \quad \implies s \equiv ar \equiv 1 \pmod p \implies s^p \equiv (ar)^p \equiv 1 \pmod {p^2}$

$ \quad \quad \quad \quad \implies ar^p \equiv 1/a^{p - 1} \pmod {p^2}$

$ \quad \quad \quad \quad \implies s^p = px^{p - 1} + ar^p \equiv px^{p - 1} + 1/a^{p - 1} \equiv 1 \pmod {p^2}$

$ \quad \quad \quad \quad \implies px^{p - 1} \equiv 1 - 1/a^{p - 1} \pmod {p^2}$

$ \quad \quad \quad \quad \implies p(ax)^{p - 1} \equiv a^{p - 1} - 1 \pmod {p^2}$

$ \quad \quad \quad \quad \implies q_p(a) \equiv 1 \pmod p$,

where $q_p(a)$ denotes the Fermat-quotient for $a$ modulo $p$.

So it follows that:

$ \quad \quad \quad \quad q_p(r) \equiv q_p(1/a) \equiv -q_p(a) \equiv -1 \pmod p$

Because of $q_p(s) \equiv 0 \pmod p$:

$ \quad \quad \quad \quad q_p(z) \equiv q_p(rs) \equiv q_p(r) + q_p(s) \equiv -1 + 0 \equiv -1 \pmod p$

Since the same holds for $x - z,t,u$, we now have:

$ \quad \quad \quad \quad q_p(y) \equiv q_p(z) \equiv -1 \pmod p$

From which it follows that:

$ \quad \quad \quad \quad y^{p - 1} \equiv 1 - p \pmod {p^2}$

$ \quad \quad \quad \quad z^{p - 1} \equiv 1 - p \pmod {p^2}$

$ \quad \quad \quad \quad \implies y^p \equiv y(1 - p) \pmod { p^2 }$

$ \quad \quad \quad \quad \implies z^p \equiv z(1 - p) \pmod { p^2 }$

We also note:

$ \quad \quad \quad \quad y^p \equiv (tu)^p \equiv t^p \equiv x - z \pmod {p^2}$

$ \quad \quad \quad \quad z^p \equiv (rs)^p \equiv r^p \equiv x - y \pmod {p^2}$

So we can set:

$ \quad \quad \quad \quad y(1 - p) \equiv x - z \pmod {p^2}$

$ \quad \quad \quad \quad z(1 - p) \equiv x - y \pmod {p^2}$

$ \quad \quad \quad \quad \implies (x - z)/y \equiv (x - y)/z \implies z(x - z) \equiv y(x - y) \pmod {p^2}$

$ \quad \quad \quad \quad \implies y^2 - z^2 \equiv (y + z)(y - z) \equiv x(y - z) \pmod {p^2}$

So either:

$ \quad \quad \quad \quad \implies x \equiv y + z \pmod {p^2}$

or:

$ \quad \quad \quad \quad \implies p | y - z$

Suppose $x \equiv y + z \pmod {p^2}$:

$ \quad \quad \quad \quad \implies (x - y)^p \equiv r^{p^2} \equiv r^p \equiv x - y \implies z^p \equiv z \pmod {p^2}$, contradicting:

$ \quad \quad \quad \quad z^p \equiv z(1 - p) \pmod { p^2 }$

So now we know $y \equiv z \pmod {p}$

But then:

$ \quad \quad \quad \quad y^p \equiv z^p \pmod {p^2}$

$ \quad \quad \quad \quad \implies x^p \equiv y^p + z^p \equiv 2z^p \pmod {p^2}$

Also:

$ \quad \quad \quad \quad x \equiv y + z \implies x \equiv z + z \equiv 2z \pmod p$

$ \quad \quad \quad \quad \implies x^p \equiv (2z)^p \pmod {p^2}$

We conclude:

$ \quad \quad \quad \quad x^p \equiv (2z)^p \equiv 2z^p \pmod {p^2}$

$ \quad \quad \quad \quad \implies (2z)^p - 2z^p \equiv 0 \pmod {p^2}$

$ \quad \quad \quad \quad \implies z^p(2^p - 2) \equiv 0 \pmod {p^2}$,

from which we can see $p$ must be a Wieferich-prime.

  • How do you deduce that $s^p\equiv 1 \pmod p$? – lulu Jun 15 '17 at 23:53
  • by means of fermat's little theorem $x^p - y^p \equiv x - y \pmod p$ –  Jun 15 '17 at 23:57
  • Of course, thank you. – lulu Jun 15 '17 at 23:58
  • And why are $x^{p-1}-s^p$ and $y^{p-1}-s^p$ relatively prime? – lulu Jun 16 '17 at 00:04
  • actually I'm in doubt there –  Jun 16 '17 at 00:12
  • Ok. I don't see any obvious reason for it to be so, but that doesn't prove much. Good luck with the repair! – lulu Jun 16 '17 at 00:14
  • Fermat's Last theorem? – BAI Jun 17 '17 at 13:30
  • Starting from the line $ \quad \quad \quad \quad z^n \equiv nab^{n - 1} \pmod {a^2}$, I lost you. According to your notation, $z^n=x^n+y^n=(a+b)^n+b^n=a^2(..)+nab^{n-1}+b^n+b^n$, so why $z^n\equiv nab^{n-1} \mod a^2$? It should be $z^n\equiv 2b^n+nab^{n-1} \mod a^2$. –  Jun 17 '17 at 16:56
  • No, my notation says: $x^n = y^n + z^n$, so it follows that: $z^n \equiv nab^{n - 1} \pmod {a^2}$ –  Jun 17 '17 at 17:35
  • 1
    why does $a^2$ divide $z^n$? – sku Jun 21 '17 at 06:06
  • why did you assume $z^n \equiv nab^{n - 1} \pmod {a^2}$? This last term does not have to be $z^n$ at all. – sku Jun 21 '17 at 06:13
  • @sku: Indeed we cannot assume $a^2 | z^n$, for your second comment: note the congruence $(a + b)^n \equiv b^n + z^n \equiv b^n + nab^{n - 1} \pmod {a^2}$, so it follows that if any solutions exist: $z^n \equiv nab^{n - 1} \pmod {a^2}$ –  Jun 21 '17 at 09:06
  • Hmmm...bounty? You've already an accepted answer? What is still missing? – Gottfried Helms Jun 28 '17 at 13:52
  • Well I didn't actually ask a question at first, so why not. –  Jun 28 '17 at 13:53

1 Answers1

10

A mistake they made is assuming $q_p(s) \equiv q_p(u) \equiv 0 \pmod p$, since $s^{p - 1} \equiv 1/s \pmod {p^2}$.