How can I integrate this: $$\int_1^3 \frac{\ln(x)}{\ln(x)+\ln(4-x)}dx ?$$ I tried making a substitution $t=4-x$ but it doesn't help.
Are there any tricks to solve this integral easier?
How can I integrate this: $$\int_1^3 \frac{\ln(x)}{\ln(x)+\ln(4-x)}dx ?$$ I tried making a substitution $t=4-x$ but it doesn't help.
Are there any tricks to solve this integral easier?
If we call the integral $I$ and do your substitution $t=4-x$, $dt=-dx$, $1 \mapsto 3$, $3 \mapsto 1$, and we have $$ I = -\int_3^1 \frac{\log{(4-t)}}{\log{(4-t)}+\log{t}} \, dt = \int_1^3 \frac{\log{(4-x)}}{\log{(4-x)}+\log{x}} \, dx, $$ where in the last step I have used tha $\int_a^b=-\int_b^a$, and relabelled the integration variable. Now add this expression to the original expression.
Use $$\int_{a}^{b}f(x) \,\mathrm dx =\int_{a}^{b}f(a+b-x) \,\mathrm dx $$
$$\mathrm {I}=\int_{a}^{b}f(x) \, \mathrm dx=\int_{a}^{b}f(a+b-x) \, \mathrm dx $$ $$ \implies \mathrm {2I}=\int_{a}^{b}\big(f(x) +f(a+b-x) \big) \,\mathrm dx $$
In your case, $f(x) +f(a+b-x)=1$
$$ \implies \mathrm {2I}=\int_{a}^{b}1 \, \mathrm dx =b-a \implies \mathrm I=\frac{b-a}{2} $$
Using the substitution $t=4-x$ you get $$I= \int_1^3 \frac{\ln x}{\ln x + \ln (4-x)} \ \mathrm{d}x = \int_1^3 \frac{\ln (4-t)}{\ln t + \ln (4-t)} \ \mathrm{d}t$$ Now, $$2I=RHS + LHS = \int_1^3 \frac{\ln t +\ln (4-t)}{\ln t + \ln (4-t)} \ \mathrm{d}t = \int_1^3 1\ \mathrm{d}t = 2$$ Hence your integral evaluates $I=1$.