I found this parametric solution experimentally:
$ (x=157 , y =443)$, $(x=2293, y=1693)$
Suppose $ y=km^2+k_1$, we make following system of equations:
$km_1^2+k_1=1693$
$km_2^2+k_1=443$
$k(m_1^2-m_2^2)=1693-443=1250=2 ˣ 625$
Suppose $k=2$ and $m_1^2-m_2^2=625$
Compare this with:
$65^2-60^2=25^2$
We find $m_1=65$ and $m_2 = 60$ plugging one of thses in equation we get:
$2 ˣ 65^2 +k_1=1693$ ⇒ $k_1=-6757$
Therefore parametric formula for y is:
$y=2 m^2 -6757$
and for z is:
$z=\frac{(2m^2-6757)^2 +1}{1250}$
Here are some results for $60≤ m≤ 1000$ found by Python$ (x, y, m)$:
$(157, 443, 60 ), (2293, 1693, 65 ), (3044821, 61693, 185), (3426229,65443,190) ,(27511285, 185443, 310), (29396965, 191693, 315), (110524549, 371693, 435), (115789501, 380443, 440), (307959613, 620443, 560), (319228837, 631693, 565), (694441477, 931693, 685), (715089973, 945443, 690),(1363345141, 1305443, 810) ,(1397497909, 1321693, 815), (2426795605, 1741693, 935), (2479327645, 1760443,940)$
It seems this equation has infinitely many solutions.