0

I've tried to solve this limit without success. Any good idea?

$$\lim_{x \to \infty} (x-1)\arctan (x)-\frac{\pi}{2}x$$

lioness99a
  • 4,943

2 Answers2

2

Note that $\lim_{x\to\infty}\arctan x=\frac{\pi}{2}$, so what you need to compute is $$ \lim_{x\to\infty}\Bigl(x\arctan x-\frac{\pi}{2}x\Bigr) $$ Note that, for $x>0$, $$ \arctan x+\arctan\frac{1}{x}=\frac{\pi}{2} $$ Use this identity and substitute $t=1/x$.

egreg
  • 238,574
0

As noted by egreg, $\lim_{x\to\infty} \arctan(x)=\frac \pi 2$.

So, if you know L'Hopital's rule, you can rewrite your limit as

$$\lim_{x\to\infty}\left(\frac{\arctan(x)-\frac{\pi}{2}}{\frac1x}\right)-\lim_{x\to\infty}\arctan(x)]$$

and apply L'Hopital's rule to the first limit.

paw88789
  • 40,402