While trying to solve answer a question, I discovered one that I felt to be remarkably similar. The question I found is 'Argue that there are infinitely many primes $p$ that ar enot congruent to $1$ modulo $5$. I believe this has been proven. (brief summary of this proof follows).
Following the Euclid Proof that there are an infinite number of primes.
First, Assume that there are a finite number of primes not congruent to $1 \pmod 5$.
I then multiply them all except $2$ together to get $N \equiv 0 \pmod 5$.
Considering the factors of $N+2$, which is odd and $\equiv 2 \pmod 5$.
It cannot be divisible by any prime on the list, as it has remainder $2$ when divided by them.
If it is prime, we have exhibited a prime $\not \equiv 1 \pmod 5$ that is not on the list.
If it is not prime, it must have a factor that is $\not \equiv 1 \pmod 5$.
This is because the product of primes $\equiv 1 \pmod 5$ is still $\equiv 1 \pmod 5$.
I can't take credit for much of any of the above proof, because nearly all of it came from Ross Millikan. Either way I'm trying to use this proof to answer the following question. I'm having a very difficult time doing so.
My question:
I wish to prove that there are infinitely many primes p which are not congruent to $-1$ modulo $19$.