The Problem :
We state the following two definitions of the real exponential function from the Pr$\infty$fWiki page. We're interested in showing that the two definitions are valid $($i.e. the defining sequence/series does converge to a unique real number$)$ and that the two definitions are equivalent.
I'm stuck at a couple of points $($which are described in highlighted lines$)$. Any help would be much appreciated. Thank you!
Definition $1$. The exponential function can be defined as the following limit of a sequence $$\exp x := \lim_{n \to \infty} \left({1 + \frac x n}\right)^n$$
Definition $2$. The exponential function can be defined as a power series $$\exp x := \sum_{n = 0}^\infty \frac {x^n} {n!}$$
My Progress and two places where I'm stuck : Essentially the solution consists of three parts, namely validity of definition $1$, validity of definition $2$ and equivalence of the two definitions.
Validity of Definition $1$. I'm stuck here! Can we show that the sequence $(a_n)$ given by $a_n = \left(1+\frac{x}{n}\right)^n$ converges for every $x \in \mathbb{R} ??$ Is it eventually monotone and bounded $??$
Validity of Definition $2$. The radius of convergence of the power series is $$r=\lim_{n \to \infty}\left| \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} \right|=\lim_{n \to \infty}\left| \frac{(n+1)!}{n!} \right|=\lim_{n \to \infty}(n+1)=+\infty$$ Thus the infinite series in the right-hand side of Definition $2$ converges to a unique real number for all $x \in \mathbb{R}$. Hence the definition is well-defined.
Equivalence of Definition $1$ and Definition $2$.
There's this proof of Definition $1$ $\implies$ Definition $2$ in the Pr$\infty$fWiki page, but it's kind of under construction and I'm not really convinced by it. So I decided to try to take my own shot at it.
For all $n \in \mathbb{N} \cup \{0\},$ let $$T_n=\left(1+\frac{x}{n} \right)^n, ~S_n=\sum_{k=0}^n \frac{x^k}{k!}$$ We have to show that $\lim_{n \to \infty} T_n = \lim_{n \to \infty} S_n$
Now, \begin{align} T_n &= \left(1+\frac{x}{n}\right)^n\\ &= 1+n\cdot\frac{x}{n}+\frac{n(n-1)}{2!}\cdot\frac{x^2}{n^2}+\cdots +\frac{n(n-1)\cdots 1}{n!}\cdot\frac{x^n}{n^n}\\ &= 1+x+\left(1-\frac{1}{n}\right)\cdot \frac{x^2}{2!}+\cdots +\left(1-\frac{1}{n}\right)\cdots \left(1-\frac{n-1}{n}\right)\cdot \frac{x^n}{n!} \end{align}
Clearly, $$S_n-T_n=\left\{1-\left(1-\frac{1}{n}\right)\right\}\frac{x^2}{2!}+\cdots +\left\{1-\left(1-\frac{1}{n}\right)\cdots \left(1-\frac{n-1}{n}\right)\right\}\cdot \frac{x^n}{n!}\geq 0$$
I'm stuck at this point. Can we show that $S_n-T_n \leq B_n$ such that $B_n \to 0$ as $n \to \infty ??$