Prove that if $[.]$ is Greatest integer function then $$\left[\frac{[x]}{n}\right]=\left[\frac{x}{n}\right]$$ $\forall$ $n \in \mathbb{Z}$
My Try is i have used both LHS and RHS:
Case $1.$ if $x \in \mathbb{Z}$ proof is trivial
Case $2.$ if $x=q+f$ where $q \in \mathbb{Z}$ and $ f \in (0 \:\: 1)$
Then $$\left[\frac{x}{n}\right]=\left[\frac{q+f}{n}\right]$$
Now by euclid's algorithm for some positive integer $p$ we have $$q=np+r$$ where $0 \le r \lt n-1$
So $$\left[\frac{x}{n}\right]=\left[\frac{q+f}{n}\right]=\left[\frac{np+r+f}{n}\right]=p+\left[\frac{r+f}{n}\right]$$
Now since $$0 \le f \lt 1$$ and $$0 \le r \lt n-1$$ we have
$$ 0 \le r+f \lt n$$
So $$\left[\frac{r+f}{n}\right]=0$$
hence
$$\left[\frac{x}{n}\right]=p \tag{1}$$
Now
$$\left[\frac{[x]}{n}\right]=\left[\frac{[q+f]}{n}\right]=\left[\frac{q}{n}\right]=\left[\frac{np+r}{n}\right]=\left[p+\frac{r}{n}\right]=p+\left[\frac{r}{n}\right]$$
Now since
$$0 \le r \lt n-1$$ we have
$$\left[\frac{r}{n}\right]=0$$ So
$$\left[\frac{[x]}{n}\right]=p \tag{2}$$
From $1$ and $2$ we have the required proof.
is there a better way please share