0

Find:$$\dfrac{\sin(A+B)\sin(A-B)}{\sin A\cos A-\sin B\cos B}$$

I couldn't simplify afterwards so help me out

2 Answers2

1

HINT:

Use Prove $ \sin(A+B)\sin(A-B)=\sin^2A-\sin^2B $

then $$2\sin A\cos A=\sin2A$$

finally Prosthaphaeresis Formulas $$\sin C-\sin D=?$$

1

The original problem was $$\frac{\sin^2a-\sin^2b}{\sin{a}\cos{a}-\sin{b}\cos{b}},$$ which is $$\frac{\frac{1-\cos2a}{2}-\frac{1-\cos2b}{2}}{\frac{1}{2}\sin2a-\frac{1}{2}\sin2b}$$ or $$\frac{\cos2b-\cos2a}{\sin2a-\sin2b}$$ or $$\frac{\sin(a-b)\sin(a+b)}{\sin(a-b)\cos(a+b)}$$ or $$\tan(a+b)$$