Since the Taylor series of $\frac1{\sqrt{1-x}}$ is$$1+\frac12x+\frac12\times\frac34x^2+\frac12\times\frac34\times\frac56x^3+\cdots,$$and this series converges (to $\frac1{\sqrt{1-x}}$) when $|x|<1$, you have$$|x|<1\Longrightarrow\frac1{\sqrt{1-x^2}}=1+\frac12x^2+\frac12\times\frac34x^4+\frac12\times\frac34\times\frac56x^6+\cdots$$Therefore,\begin{multline*}1+\frac12\left(\frac{2x}{1+x^2}\right)^2+\frac12\times\frac34\left(\frac{2x}{1+x^2}\right)^4+\frac12\times\frac34\times\frac56\left(\frac{2x}{1+x^2}\right)^6+\cdots=\\=\frac1{\sqrt{1-\left(\frac{2x}{1+x^2}\right)^2}}=\frac{1+x^2}{1-x^2}.\end{multline*}