I did the complete solution for multiplier 3 here: http://math.stackexchange.com/questions/1964607/when-will-a-parametric-solution-generate-all-possible-solutions/1965805#1965805
Back to 2:
With Jack's variables, let $p+q+r+s$ be odd and $\gcd(p,q,r,s) = 1,$ then define
$$ a = p^2 + q^2 + r^2 + s^2, $$
$$ u = 2(-pr + qr +ps+qs), $$
$$ v = p^2 - q^2 + r^2 - s^2 + 2 pq + 2rs, $$
$$ w = p^2 - q^2 - r^2 + s^2 - 2 pq + 2rs. $$
This gives
$$ u^2 + v^2 + w^2 = 2 a^2 $$
and should give all primitive solutions. Checking, and then proving, that these are all, takes longer than finding the formula.
Notice that $u \equiv 0 \pmod 4,$ because
$$ -pr + qr +ps+qs \equiv pr + qr +ps+qs \equiv (p+q)(r+s) \pmod 2. $$
As we demanded that $p+q+r+s$ be odd, it is not possible to have both $p+q$ and $r+s$ odd. One of $p+q$ and $r+s$ is odd, while the other is even, meaning the product is even.
=================================
? a = p^2 + q^2 + r^2 + s^2
%1 = p^2 + (q^2 + (r^2 + s^2))
?
?
? u = 2 * ( -p * r + q * r + p * s + q * s )
%2 = (-2*r + 2*s)*p + (2*r + 2*s)*q
?
? v = p^2 - q^2 + r^2 - s^2 + 2 * p * q + 2 * r * s
%3 = p^2 + 2*q*p + (-q^2 + (r^2 + 2*s*r - s^2))
?
? w = p^2 - q^2 - r^2 + s^2 - 2 * p * q + 2 * r * s
%4 = p^2 - 2*q*p + (-q^2 + (-r^2 + 2*s*r + s^2))
?
?
?
?
? u^2 + v^2 + w^2 - 2 * a^2
%5 = 0
?
?
===========================
Raw search 2 a^2 = u^2 + v^2 + w^2, with odd a,v,w, even u, and v >= w.
1 0 1 1
3 4 1 1
5 0 7 1
5 4 5 3
7 4 9 1
7 8 5 3
9 4 11 5
9 8 7 7
11 4 15 1
11 8 13 3
11 12 7 7
13 0 17 7
13 8 15 7
13 12 13 5
13 16 9 1
15 8 19 5
15 16 13 5
15 20 7 1
17 0 23 7
17 4 21 11
17 8 17 15
17 20 13 3
17 24 1 1
19 4 25 9
19 12 17 17
19 12 23 7
19 16 21 5
19 24 11 5
21 4 29 5
21 8 23 17
21 16 25 1
21 20 19 11
23 4 31 9
23 12 25 17
23 16 21 19
23 24 19 11
23 28 15 7
23 32 5 3
25 0 31 17
25 4 35 3
25 8 31 15
25 20 27 11
25 20 29 3
25 24 25 7
25 28 21 5
25 32 15 1
27 8 35 13
27 8 37 5
27 16 29 19
27 20 23 23
27 28 25 7
29 0 41 1
29 4 35 21
29 8 33 23
29 12 37 13
29 20 29 21
29 28 27 13
29 36 19 5
29 40 9 1
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
a u v w p q r s
1 0 1 1 1 0 0 0
3 4 1 1 0 1 1 1
5 0 7 1 0 0 2 1
5 0 7 1 0 0 -2 -1
5 4 5 3 2 0 -1 0
7 4 9 1 2 1 1 1
7 8 5 3 1 -1 -2 -1
9 4 11 5 2 0 -2 -1
9 8 7 7 0 1 2 2
11 12 7 7 3 0 -1 1
11 4 15 1 3 1 -1 0
11 8 13 3 3 1 0 1
13 0 17 7 0 0 3 2
13 0 17 7 0 0 -3 -2
13 12 13 5 3 0 -2 0
13 16 9 1 1 2 2 2
13 8 15 7 2 1 2 2
15 16 13 5 2 -1 -3 -1
15 20 7 1 3 1 -1 2
15 8 19 5 1 1 3 2
17 0 23 7 4 1 0 0
17 20 13 3 0 2 3 2
17 24 1 1 3 0 -2 2
17 4 21 11 2 0 -3 -2
17 8 17 15 4 0 -1 0
19 12 17 17 0 1 3 3
19 12 23 7 3 0 -3 -1
19 16 21 5 4 1 -1 1
19 24 11 5 3 -1 -3 0
19 4 25 9 4 1 1 1
21 16 25 1 3 2 2 2
21 20 19 11 4 1 0 2
21 4 29 5 1 0 -4 -2
21 8 23 17 4 0 -2 -1
23 12 25 17 2 1 3 3
23 16 21 19 3 1 2 3
23 24 19 11 1 2 3 3
23 28 15 7 3 2 1 3
23 32 5 3 1 3 2 3
23 4 31 9 3 1 3 2
25 0 31 17 0 0 4 3
25 0 31 17 0 0 -4 -3
25 20 27 11 2 -1 -4 -2
25 20 29 3 4 2 1 2
25 24 25 7 4 0 -3 0
25 28 21 5 1 -2 -4 -2
25 32 15 1 2 -2 -4 -1
25 4 35 3 2 1 4 2
25 8 31 15 4 1 2 2
27 16 29 19 1 -1 -4 -3
27 20 23 23 5 0 -1 1
27 28 25 7 3 -1 -4 -1
27 8 35 13 5 1 -1 0
27 8 37 5 4 1 -3 -1
29 0 41 1 5 2 0 0
29 12 37 13 3 0 -4 -2
29 20 29 21 5 0 -2 0
29 28 27 13 0 2 4 3
29 36 19 5 4 2 0 3
29 40 9 1 3 -2 -4 0
29 4 35 21 2 0 -4 -3
29 8 33 23 4 0 -3 -2
a u v w p q r s
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=