A successful application of Euler´s Finite Difference Theorem
Given $f(x) = \sum_{j=0}^ra_jx^j$, Euler´s Finite Fifference Theorem statest that:
$$\sum_{k=0}^{n}(-1)^k\binom{n}{k}f(k) = (-1)^n \Delta_1^nf(x)\big|_{x=0}=\left\{
\begin{array}{ll}
0, & 0 \leq r<n\\
(-1)^na_nn!,& r = n
\end{array}
\right.
$$
We have
\begin{align*}
\tag1\sum_{k=0}^{n}(-1)^k\binom{n}{k}\binom{an-ak}{n} &= \sum_{k=0}^{n}(-1)^k\binom{n}{k}\binom{a(n-k)}{n}\\
\tag2&=\sum_{k=0}^{n}(-1)^{(n-k)}\binom{n}{(n-k)}\binom{a(n-(n-k))}{n}\\
\tag3&=\sum_{k=0}^{n}(-1)^{(n-k)}\binom{n}{n-k}\binom{ak}{n}\\
\tag4&=\sum_{k=0}^{n}(-1)^{(n-k)}\binom{n}{k}\binom{ak}{n}\\
\tag5&=(-1)^{n}\sum_{k=0}^{n}(-1)^{-k}\binom{n}{k}\binom{ak}{n}\\
\tag6&=(-1)^{n}\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{ak}{n}\\
\end{align*}
Let $f(k) = \binom{ak}{n}$ where $a$ is any nonzero complex number. The definition of the binomial coefficient implies that $f(k)$ is a polynomial of degree $n$ in $k$, i.e. $\binom{ak}{n} = \sum_{j=0}^na_jk^j$.
The coefficient of $k^n$ is $\frac{a^n}{n!}$ sience
\begin{align*}
f(k)=\binom{ak}{n} = \tfrac{(ak)(ak-1)(ak-2)\cdots(ak-n+1)}{n!}=\sum_{j=0}^na_jk^j
\end{align*}
By definition
\begin{align*}
\tag7(-1)^n\sum_{k=0}^{n}(-1)^k\binom{n}{k}\binom{ak}{n}
&=(-1)^n\sum_{k=0}^{n}(-1)^k\binom{n}{k}f(k)\\
\tag8&=(-1)^n\sum_{k=0}^{n}(-1)^k\binom{n}{k}\sum_{j=0}^na_jk^j\\
\tag9&=(-1)^n\underbrace{\sum_{j=0}^na_j\sum_{k=0}^{n}(-1)^k\binom{n}{k}k^j}_{(-1)^n \Delta_1^nf(x)\big|_{x=0}}=\left\{\begin{array}{ll}
0, & 0\leq j <n\\
a_n n!,& j = n
\end{array}\right.
\end{align*}
Because here the coefficient of $k^n$ is $\frac{a^n}{n!}$ and $j=n$, implies that
\begin{align*}
\tag{10} (-1)^n\sum_{j=n}^na_j\sum_{k=0}^{n}(-1)^k\binom{n}{k}k^j&=(-1)^na_n
\sum_{k=0}^{n}(-1)^k\binom{n}{k}k^n\\
\tag{11} &=(-1)^n\big[a_n(-1)^nn!\big]\\
\tag{12} &= \frac{a^n}{n!}n! \\
\tag{13} &= a^n\\
&&\Box
\end{align*}
In this way we have for $a=2$:
$$\sum_{k=0}^{n}(-1)^k\binom{n}{k}\binom{2n-2k}{n} = 2^n$$
Note In $(10)$: When we study Stirling numbers of the second kind, $S(n, k)$, we will discover that
$\sum_{k=0}^{n}(-1)^k\binom{n}{k}k^j= (-1)^nn!S(n, k),\quad j\leq n$
Bibliographic references:
Gould, H. W. (Oktober 2015). Combinatorial Identities for Stirling Numbers, 68, 69, 70.