1

According to Rudin Since $\lim_{n\rightarrow\infty}n^{\frac{1}{n}}=\limsup_{n\rightarrow\infty}n^{\frac{1}{n}}=1$ and $\limsup_{n\rightarrow \infty}|c_n|^{\frac{1}{n}}=R$, $$\limsup_{n\rightarrow \infty}(n|c_n|)^{\frac{1}{n}}=\limsup_{n\rightarrow \infty}|c_n|^{\frac{1}{n}}=R.$$ Why is this reasonable?

백주상
  • 801

1 Answers1

0

Then following fact is used:

Lemma. If $a_n\to a>0$ and $\limsup b_n=b\ge 0$, then $\limsup a_nb_n=ab$.

Proof. It suffices to show the following:

(i) If a subsequence of $a_nb_n$ converges to $c$, then $c\le ab$.

(ii) There exists a subsequence of $a_nb_n$ converging to $ab$.

For (i), if $a_{n_k}b_{n_k}\to c$, then $$ b_{n_k}=\frac{1}{a_{n_k}}\cdot a_{n_k}b_{n_k}\to \frac{1}{a} \cdot c, $$ and hence $\frac{c}{a}\le b$ or $c\le ab$.

Fot (ii), since $\limsup b_n=b$, there exists a subsequence $b_{n_k}\to b$ and hence $a_{n_k}b_{n_k}\to ab$.