I represented the problem in the following view and solved it: $$\begin{align}-\sin35^\circ\cdot\sin25^\circ\cdot\sin85^\circ\cdot\sin45^\circ&=A\cdot\sin45^\circ\\ -\frac{1}{2}(\cos20^\circ-\cos70^\circ)\cdot\frac{1}{2}(\cos50^\circ-\cos120^\circ)&=A\cdot\sin45^\circ\\ \cos20^\circ\cdot\cos50^\circ-\cos50^\circ\cdot\cos70^\circ+\frac{\cos20^\circ}{2}-\frac{\cos70^\circ}{2}&=A\cdot(-4)\cdot \sin45^\circ\\ \frac{1}{2}(\cos30^\circ+\cos70^\circ)-\frac{1}{2}(\cos20^\circ+\cos120^\circ)&=A\cdot(-4)\cdot \sin45^\circ\\ \frac{\sqrt{3}}{4}+\frac{\cos70^\circ}{2}-\frac{\cos20^\circ}{2}+\frac{1}{4}+\frac{\cos20^\circ}{2}-\frac{\cos70^\circ}{2}&=-2\sqrt{2}A\\ A&=-\frac{\sqrt{6}+\sqrt{2}}{16} \end{align}$$ I believe that the above answer is true. But that didn't match a variant below:
A) $-\frac{1}{8}$
B)$-\frac{\sqrt{3}}{8}$
C) $\frac{\sqrt{3}}{8}$
D) $-\frac{1}{8}\sqrt{2-\sqrt{3}}$
E) $-\frac{1}{8}\sqrt{2+\sqrt{3}}$
I did the problem over again. After getting the same result, I thought that the apperance of my answer could be changed to match one above, so I tried to implement one of formulae involving radical numbers: all to no avail. How to change that?