Mathematica gives the following. But how?!
$$\small{\int_0^1 \dfrac{4\cos^{-1}x}{\sqrt{2x-x^2}}\,dx=\frac{8}{9\sqrt{\pi}}\left( 9\Gamma\left(\tfrac{3}{4}\right)^2{}_4F_3\left( \begin{array}{c}\tfrac14\,\tfrac14\,\tfrac34\,\tfrac34\\\tfrac12\,\tfrac54\,\tfrac54\end{array};\tfrac14\right) +\Gamma\left(\tfrac{5}{4}\right)^2{}_4F_3\left( \begin{array}{c}\tfrac34\,\tfrac34\,\tfrac54\,\tfrac54\\\tfrac32\,\tfrac74\,\tfrac74\end{array};\tfrac14\right) \right)}$$
Is there some clever trig substitution that leads to the right-hand side? Or a integral on the complex plane? Can we make it look like a Mahler measure?
To aid comparison, we can rewrite this as:
$$\small{\int_0^1 \dfrac{4\cos^{-1}x}{\sqrt{2x-x^2}}\,dx =\frac{8\,\Gamma{\left(\frac34\right)}^2}{\sqrt{\pi}}\,{_4F_3}{\left(\frac14,\frac14,\frac34,\frac34;\frac12,\frac54,\frac54;\frac14\right)}\color{red}+\frac{\Gamma{\left(\frac14\right)}^2}{18\sqrt{\pi}}{_4F_3}{\left(\frac34,\frac34,\frac54,\frac54;\frac32,\frac74,\frac74;\frac14\right)}}=\color{red}{\,??}$$
This seems to have a similar flavor to Closed form for integral of inverse hyperbolic function in terms of ${_4F_3}$,
$$\small{\int_{0}^{1}\frac{x\sinh^{-1}{x}}{\sqrt{1-x^4}}\,\mathrm{d}x =\frac{\Gamma{\left(\frac34\right)}^2}{\sqrt{2\pi}}\,{_4F_3}{\left(\frac14,\frac14,\frac34,\frac34;\frac12,\frac54,\frac54;1\right)}\color{red}-\frac{\Gamma{\left(\frac14\right)}^2}{72\sqrt{2\pi}}{_4F_3}{\left(\frac34,\frac34,\frac54,\frac54;\frac32,\frac74,\frac74;1\right)}}=\color{red}{\frac{\pi}4\,\ln2}$$
Although in my case, it seems like there is less hope for a dramatic simplification. (Feel free to prove me wrong about that!) At least, I haven't found a simpler form in the Inverse Symbolic Calculator, even after playing with factors of $\ln2$, $\ln3$, $\pi$, and $\sqrt\pi$. Conversely, is it possible to prove (or give a plausible argument) that this integral doesn't have a simpler form (in terms of the functions that we'd hope to see)?
Motivation for this question: Area bounded by $\cos x+\cos y=1$
$\displaystyle =2\int\limits_0^{\pi/2} \arcsin(\sqrt{\frac{\cos t}{2}})dt = \sqrt{2}\sum\limits_{k=0}^\infty \binom {2k} k \frac{1}{8^k(2k+1)} \int\limits_0^{\pi/2} \sqrt{\cos t}^{2k+1}dt$
$\displaystyle =\sqrt{2}\sum\limits_{k=0}^\infty \frac{1}{8^k(2k+1)} \frac{\binom {2k} k}{\binom {\frac{k}{2}+\frac{1}{4}} {\frac{1}{2}}} $
– user90369 Aug 21 '17 at 16:37