1

We know that $$e_q(z)=\sum_{j\geq 0} \frac{z^j}{(q;q)_j}=\frac{1}{(z;q)_{\infty}}$$

where $(a;q)_{\infty}=\prod_{i=0}^{\infty}(1−aq^i)$ denotes the q-shifted factorial.

The limit between the $q$-exponential and the ordinary exponential is

$$\lim_{q\rightarrow1}e_q((1-q)z)=\lim_{q\rightarrow1}\frac{1}{((1-q)z;q)_{\infty}}=e^z.$$

My question is how to prove

$$\lim_{q\rightarrow1}\frac{1}{((1-q)\sqrt{1-q^2}x;q)_{\infty}}=e^{\sqrt{2}x}?$$

I'm glad for your help.

othmane
  • 85

1 Answers1

3

We know that $(q;q)_n=(1-q)^n[n]_q!\;$ and $\lim_{q\to1} [n]_q!=n!.\quad$ Therefore $$e_q((1-q)(1+q)x) = \sum_{n=0}^\infty \frac{(1-q)^n(1+q)^nx^n}{(q;q)_n}=\sum_{n=0}^\infty \frac{(1+q)^n x^n}{[n]_q!}.$$ The limit as $q\to1$ gives $e^{2x}$ which is justified because of absolute convergence.

Somos
  • 35,251
  • 3
  • 30
  • 76