With some handwaving, we can justify the number equals to $4$.
For $|x| < 1$ and $|t| \le 1$, we have
$$\prod_{k=0}^\infty (1 + tx^{2^k}) = \sum_{n=0}^\infty t^{b_n}x^n
$$
This suggests for $|x| < 1$, the OGF for the sequence $b_n$ satisfy following relation:
$$\begin{align}
\sum_{n=0}^\infty b_n x^n
&= \lim_{t\to 1-} t\frac{\partial}{\partial t}\left[\sum_{n=0}^\infty t^{b_n}x^n \right]
= \lim_{t\to 1-} t\frac{\partial}{\partial t}\left[
\prod_{k=0}^\infty (1 + tx^{2^k})
\right]\\
&= \lim_{t\to 1-}\left\{
\left(\sum_{k=0}^\infty \frac{tx^{2^k}}{1 + tx^{2^k}}\right)
\prod_{k=0}^\infty(1 + tx^{2^k})\right\}\\
&= \frac{1}{1-x}\sum_{k=0}^\infty \frac{x^{2^k}}{1 + x^{2^2}}
\end{align}
$$
Notice $b_0 = 0$ and $\displaystyle\;\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n-1} = \int_0^1 \frac{1-x}{x}x^n dx\;$ for $n \ge 1$.
We find
$$\sum_{n=1}^\infty \frac{b_n}{n(n+1)} = \int_0^1 \sum_{k=0}^\infty \frac{x^{2^k-1}}{1+x^{2^k}}dx
= \sum_{k=0}^\infty \frac{1}{2^k}\left[\log(1+x^{2^k})\right]_0^1
= \sum_{k=0}^\infty \frac{\log 2}{2^k} = \log 4\\
\implies
\exp\left(\sum_{n=1}^\infty \frac{b_n}{n(n+1)}\right) = 4
$$
Update
After I finished this answer, I have a déjà vu feeling I have seen this before.
It turns out I have answered a similar question four years ago! See this for a more rigorous way in evaluating the sum.