0

How to prove that -

$$\frac 1{\sin^2x} + \frac 1 {\sin^2y} - \frac{2\cos(x-y)}{\sin x\sin y} = \frac{\sin^2(x-y)}{\sin^2x\sin^2y}$$

2 Answers2

0

The numerator $$=\sin^2x+\sin^2y-\cos(x-y)\cdot2\sin x\sin y$$

$$=\sin^2x+\sin^2y-\cos(x-y)[\cos(x-y)-\cos(x+y)]$$

$$=\sin^2x+\sin^2y-\cos^2(x-y)+\cos(x-y)\cos(x+y)$$

Now use Prove that $\cos (A + B)\cos (A - B) = {\cos ^2}A - {\sin ^2}B$

0

we have (the left-hand-side) $$\frac{\sin(x)^2+\sin(y)^2-2(\cos(x)\cos(y)+\sin(x)\sin(y))\sin(x)\sin(y)}{\sin(x)^2\sin(y)^2}$$ and this must be equal $$\frac{\sin(x)^2\cos(y)^2+\cos(x)^2\sin(y)^2-2\sin(x)\cos(x)\sin(y)\cos(y)}{\sin(x)^2\sin(y)^2}$$ now we will write only the numerators: both Terms are equal since $$2\sin(x)^2\sin(y)^2-2\left(\cos(x)\cos(y)+\sin(x)\sin(y)\right)\sin(x)\sin(y)=$$ $$-2\sin(x)\cos(x)\sin(y)\cos(y)$$