Show that $$\prod_{n=2}^{+\infty }n^{(-1)^{n+1}/n}=\frac{\sqrt[3]{3}}{\sqrt[2]{2}}\cdot \frac{\sqrt[5]{5}}{\sqrt[4]{4}}\cdot \frac{\sqrt[7]{7}}{\sqrt[6]{6}}\cdot \frac{\sqrt[9]{9}}{\sqrt[8]{8}}\cdot \frac{\sqrt[11]{11}}{\sqrt[10]{10}}\cdot \frac{\sqrt[13]{13}}{\sqrt[12]{12}}\cdot ...=2^{-\gamma +\log \sqrt{2}}$$
The proof I know is what I will describe later, but will there be another way?
My proof: I need to prove that: $$\sum\limits_{n=2}^{+\infty }{\left( -1 \right)^{n+1}\frac{\log n}{n}}=\left( \log 2-2\gamma \right)\frac{\log 2}{2}$$ This is equivalent to proving $$\eta'(1)=\frac{\log(2)^2}{2}-\gamma \log(2)$$ where $$\eta(s)=1-\frac{1}{2^s}+\frac{1}{3^s}-\frac{1}{4^s}+\dotsc$$ is the Dirichlet Eta Function. It is well-known that $\eta(1)=\log(2)$ so we are interested in the linear coefficient in the power series of $\eta(s)$ around $s=1$. Our proof needs two ingredients:
The identity $\eta(s)=(1-2^{1-s}) \zeta(s)$ where $$\zeta(s)=1+\frac{1}{2^s}+\frac{1}{3^s}+\dotsc$$ is the Riemann Zeta Function.
The asymptotic expansion $\zeta(s)=\frac{1}{s-1}+\gamma+\mathcal{O}\left(s-1\right)$ where $s \to 1$.
We have: $$\begin{align*} \eta(s)&=(1-2^{1-s})\zeta(s)\\ &=\left(\log(2)(s-1)-\frac{\log(2)^2}{2} (s-1)^2+\mathcal{O}\left((s-1)^3\right)\right)\left(\frac{1}{s-1}+\gamma+\mathcal{O}\left(1-s\right)\right)\\ &=\log(2)+\left(\gamma \log(2)-\frac{\log(2)^2}{2}\right)(s-1)+\mathcal{O}\left((s-1)^2\right) \end{align*}$$ which is exactly what we wanted to prove.