I am trying to calculate the integral $$\int\limits_{-1}^{1}{\frac{\arctan x}{1+x}\ln \frac{1+x^{2}}{2}dx}=\frac{\pi ^{3}}{96}$$
My idea is to use and try to calculate and prove that
$\int\limits_{-1}^{1}{\frac{\arctan x}{1+x}\ln \frac{1+x^{2}}{2}dx}=-\int\limits_{0}^{1}{\frac{\ln \left( 1-x^{2} \right)}{1+x^{2}}\ln \frac{1+x^{2}}{2}dx}-\int\limits_{0}^{1}{\frac{2x\arctan x}{1+x^{2}}\ln \left( 1-x^{2} \right)dx}$
$\frac{2x\arctan x}{1+x^{2}}=\operatorname{Re}\left( \frac{\ln \left( 1+ix \right)}{1+ix} \right)-\operatorname{Re}\left( \frac{\ln \left( 1-ix \right)}{1+ix} \right)$
$\int\limits_{0}^{1}{\frac{\ln \left( 1-x^{2} \right)}{1+x^{2}}\ln \frac{1+x^{2}}{2}dx}=\frac{\pi ^{3}}{32}+\frac{\pi }{4}\ln ^{2}2-2C\ln 2$
$\int\limits_{0}^{1}{\frac{\ln \left( 1\pm ix \right)\ln \left( 1\pm x \right)}{1+ix}dx}$