Find the maximum value of $x_1x_2+x_2x_3+\cdots+x_nx_1$ if $x_1+x_2+\cdots+x_n=0$ and $x_1^2+x_2^2+...+x_n^2=1$.
I can get by Cauchy-Schwarz that $x_1x_2+x_2x_3+\cdots+x_nx_1 \leqslant 1$, but can expression $x_1x_2+x_2x_3+\cdots+x_nx_1$ be smaller?
Find the maximum value of $x_1x_2+x_2x_3+\cdots+x_nx_1$ if $x_1+x_2+\cdots+x_n=0$ and $x_1^2+x_2^2+...+x_n^2=1$.
I can get by Cauchy-Schwarz that $x_1x_2+x_2x_3+\cdots+x_nx_1 \leqslant 1$, but can expression $x_1x_2+x_2x_3+\cdots+x_nx_1$ be smaller?
This is known as the Ky Fan-Tausski-Todd inequality or a special case of the discrete Wirtinger's inequality. The proof is not that hard, but requires an ingenious change of variables. See here for the complete proof and other details.