2

If $\{a_n\}$ is bounded sequence, prove that $$\limsup_{n\to \infty} a_n=- \liminf _{n\to \infty} (-a_n)$$

My Attempt:

\begin{align} \liminf_{n \to \infty} (-a_n)&=\lim_{n \to \infty}\inf(-a_n,-a_{n+1},....)\\ &=\lim _{n \to \infty} (-\sup (a_n,a_{n+1},....))\\ &=-\lim _{n \to \infty}\sup (a_n,a_{n+1},....) \end{align}

hence

$\limsup\limits_{n\to \infty} a_n=-\liminf\limits_{n\to \infty}(-a_n)$

Is this attempt right?

Did
  • 279,727

0 Answers0