If $\{a_n\}$ is bounded sequence, prove that $$\limsup_{n\to \infty} a_n=- \liminf _{n\to \infty} (-a_n)$$
My Attempt:
\begin{align} \liminf_{n \to \infty} (-a_n)&=\lim_{n \to \infty}\inf(-a_n,-a_{n+1},....)\\ &=\lim _{n \to \infty} (-\sup (a_n,a_{n+1},....))\\ &=-\lim _{n \to \infty}\sup (a_n,a_{n+1},....) \end{align}
hence
$\limsup\limits_{n\to \infty} a_n=-\liminf\limits_{n\to \infty}(-a_n)$
Is this attempt right?
\liminf, \limsup, \infand\supare existing commands. – Arthur Aug 30 '17 at 05:25