There are other ways to evaluate,
$\displaystyle \int_0^1 \int_0^1 \dfrac{1}{1-x^2y^2}dxdy$
Define,
$\begin{align}P&:=\int_0^1\int_0^1\frac{1}{1-xy}\, dxdy\\
Q&:=\int_0^1\int_0^1\frac{1}{1+xy}\, dxdy
\end{align}$
$\begin{align}
Q+P&=\int_0^1\int_0^1 \frac{1}{1+xy}\, dxdy+\int_0^1\int_0^1 \frac{1}{1-xy}\, dxdy\\
\end{align}$
In the second integral perform the change of variable $u=-x$,
$\begin{align}
Q+P&=\int_0^1\int_0^1 \frac{1}{1+xy}\, dxdy+\int_0^1\left(\int_{-1}^0 \frac{1}{1+xy}\,dx\right)\, dy\\
&=\int_0^1\left(\int_{-1}^1 \frac{1}{1+xy}\,dx\right)\, dy\\
\end{align}$
For $y\in[0;1]$, let,
$\displaystyle K(y)=\int_{-1}^1 \frac{1}{1+xy}\,dx$
If $y\in [0;1]$, define the function $\varphi$ on $[-1;1]$,
$\displaystyle \varphi(x)=x+\frac{1}{2}y(x^2-1)$
$\displaystyle \varphi^{-1}(u)=\frac{\sqrt{y^2+2uy+1}-1}{y}$
and,
$\displaystyle \frac{\partial{\varphi^{-1}}}{\partial{u}}(u)=\frac{1}{\sqrt{y^2+2uy+1}}$
Perform the change of variable $u=\varphi(x)$,
$\begin{align}
K(y)&=\int_{-1}^1\frac{1}{y^2+2uy+1}\,du
\end{align}$
Therefore,
$\begin{align}
Q+P&=\int_0^1\left(\int_{-1}^1\frac{1}{y^2+2uy+1}\,du\right)\,dy
\end{align}$
Perform the change of variable $u=\cos\theta$,
$\begin{align}
Q+P&=\int_0^1\left(\int_{0}^\pi\frac{\sin \theta}{y^2+2y\cos\theta+1}\,d\theta\right)\,dy\\
&=\int_{0}^\pi \sin\theta\left(\int_0^1 \frac{1}{y^2+2y\cos\theta+1}\,dy\right)\,d\theta\\
&=\int_{0}^\pi \sin\theta\left[\frac{\arctan\left(\frac{\cos \theta+y}{\sqrt{1-\cos^2 \theta}}\right)}{\sqrt{1-\cos^2 \theta}}\right]_{y=0}^{y=1}\,d\theta\\
\end{align}$
Since for $y\in \left[0,\pi\right[$,
$\begin{align}
\tan\left(\frac{\pi}{2}-\frac{\theta}{2}\right)&=\frac{\cos\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}\\
&=\frac{2\cos^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}\\
&=\frac{\cos^2\left(\frac{\theta}{2}\right)+\left(1-\sin^2\left(\frac{\theta}{2}\right)\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}\\
&=\frac{1+\cos^2\left(\frac{\theta}{2}\right)-\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}\\
&=\frac{1+\cos\left(2\times \frac{y}{2}\right)}{\sin\left(2\times \frac{\theta}{2}\right)}\\
&=\frac{1+\cos\theta}{\sin \theta}
\end{align}$
then,
$\begin{align}
Q+P&=\int_{0}^\pi \left(\left(\frac{\pi}{2}-\frac{\theta}{2}\right)-\left(\frac{\pi}{2}-\theta\right)\right)\,d\theta\\
&=\int_{0}^\pi\frac{\theta}{2}\,d\theta\\
&=\frac{\pi^2}{4}
\end{align}$
Moreover,
$\begin{align}
Q+P&=\int_0^1\int_0^1 \frac{1}{1+xy}\, dxdy+\int_0^1\int_0^1 \frac{1}{1-xy}\, dxdy\\
&=\int_0^1\int_0^1\frac{2}{1-x^2y^2}\, dxdy\\
\end{align}$
Therefore,
$\boxed{\displaystyle \int_0^1\int_0^1\frac{1}{1-x^2y^2}\, dxdy=\frac{\pi^2}{8}}$
(from Archiv der Mathematik und Physik,1913, p323-324, F. Goldscheider)
Another way,
https://algean2016.wordpress.com/2013/10/21/the-basel-problem-double-integral-method-i/
(from, A proof that Euler missed: evaluating $\zeta(2)$ the easy way. Tom M. Apostol, The mathematical intelligencer, vol. 5, number 3,1983. This article computes $P$ but it's easily proved that $P=2Q$)