The exponential formula tells us that the cycle index $Z(P_k)$ of the
unlabeled set operator
$$\def\textsc#1{\dosc#1\csod}
\def\dosc#1#2\csod{{\rm #1{\small #2}}}\textsc{SET}$$
on $k$ slots has OGF
$$Z(P_k) = [w^k]
\exp\left(\sum_{l\ge 1} (-1)^{l-1} a_l \frac{w^l}{l}\right).$$
The desired probability is given by
$${n\choose k}^{-1} \frac{1}{n}
\sum_{p=0}^{n-1}
\left. Z(P_k)
\left(\sum_{q=1}^n z^q\right)\right|_{z=\exp(2\pi ip/n)}.$$
This is
$${n\choose k}^{-1} \frac{1}{n}
\sum_{p=0}^{n-1} \left. [w^k]
\exp\left(\sum_{l\ge 1} (-1)^{l-1} \left(\sum_{q=1}^n z^{ql}\right)
\frac{w^l}{l}\right)\right|_{z=\exp(2\pi ip/n)}.$$
Evaluating the contribution for $p=0$ first we get
$${n\choose k}^{-1} \frac{1}{n}
[w^k] \exp\left(\sum_{l\ge 1} (-1)^{l-1} n
\frac{w^l}{l}\right)
\\ = {n\choose k}^{-1} \frac{1}{n}
[w^k] \exp\left(n \log(1+w)\right)
\\ = {n\choose k}^{-1} \frac{1}{n}
[w^k] (1+w)^n
= {n\choose k}^{-1} \frac{1}{n} {n\choose k}
= \frac{1}{n}.$$
It remains to evaluate the contribution from $1\le p\le n-1.$ Now for
these $p$ if $l$ is a multiple of $m = n/\gcd(p, n)$ we have
$$\sum_{q=1}^n \exp(2\pi ip/n)^{ql} = n.$$
We get zero otherwise. This yields for the remaining terms without the
scalar in front
$$\sum_{p=1}^{n-1} [w^k]
\exp\left(\sum_{l\ge 1} (-1)^{ml-1} n
\frac{w^{ml}}{ml} \right)
= \sum_{p=1}^{n-1} [w^k]
\exp\left(-\frac{n}{m} \sum_{l\ge 1}
\frac{(-w)^{ml}}{l} \right)
\\ = \sum_{p=1}^{n-1} [w^k]
\exp\left(-\frac{n}{m}\log\frac{1}{1-(-w)^m}\right)
= \sum_{p=1}^{n-1} [w^k] (1-(-w)^{n/\gcd(p, n)})^{\gcd(p, n)}
\\ = \sum_{p=1}^{n-1} [w^k] (1+(-1)^{1+n/\gcd(p, n)}
w^{n/\gcd(p, n)})^{\gcd(p, n)}.$$
Using an Iverson bracket this becomes
$$\sum_{p=1}^{n-1} [[n/\gcd(p,n)|k]] \times
{\gcd(p, n)\choose k\gcd(p,n)/n}
(-1)^{k\gcd(p,n)/n+k}.$$
Putting it all together we thus obtain
$$\bbox[5px,border:2px solid #00A000]{
\frac{1}{n} + (-1)^k
{n\choose k}^{-1} \frac{1}{n}
\sum_{p=1}^{n-1} [[n/\gcd(p,n)|k]] \times
{\gcd(p, n)\choose k\gcd(p,n)/n}
(-1)^{k\gcd(p,n)/n}.}$$
Note that $n/\gcd(p,n)$ is a divisor of $n$ that is at least two (we
would need $p=n$ to get $n/\gcd(p,n) = 1$ but $p\lt n$). This means
when $\gcd(k, n) = 1$ the Iverson bracket fails for all $p$ and only
the first term remains, which is what we wanted to prove.
As a sanity check we evaluate the formula when $k=n.$ The sum of the
one subset is $n(n+1)/2$ so we should get for the probability one when
$n$ is odd and zero when it is even. We find
$$\frac{1}{n} + (-1)^n
{n\choose n}^{-1} \frac{1}{n}
\sum_{p=1}^{n-1}
{\gcd(p, n)\choose \gcd(p,n)}
(-1)^{\gcd(p,n)}
\\ = \frac{1}{n} + (-1)^n \frac{1}{n}
\sum_{p=1}^{n-1}
(-1)^{\gcd(p,n)}
= (-1)^n \frac{1}{n}
\sum_{p=1}^{n}
(-1)^{\gcd(p,n)}
\\ = (-1)^n \frac{1}{n}
\sum_{d|n} \sum_{\gcd(p,n) = d} (-1)^d
= (-1)^n \frac{1}{n}
\sum_{d|n} (-1)^d \sum_{\gcd(q,n/d) = 1} 1
\\ = (-1)^n \frac{1}{n} \sum_{d|n} (-1)^d \varphi(n/d).$$
We evaluate this using formal Dirichlet series, starting from
$\sum_{d|n} \varphi(d) = n$ which yields
$$\sum_{n\ge 1} \frac{\varphi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}.$$
Furthermore we have
$$\sum_{n\ge 1} \frac{(-1)^n}{n^s} =
-\left(1-\frac{2}{2^s}\right)\zeta(s).$$
This means that
$$\sum_{n\ge 1} \frac{1}{n^s} \sum_{d|n} (-1)^d \varphi(n/d)
= -\left(1-\frac{2}{2^s}\right) \zeta(s-1).$$
Now we have for $n$ even
$$- (-1)^n \frac{1}{n} [n^{-s}] \left(1-\frac{2}{2^s}\right) \zeta(s-1)
= - (-1)^n \frac{1}{n} (n - 2 [(n/2)^{-s}] \zeta(s-1))
\\ = - (-1)^n \frac{1}{n} (n - 2 \times n/2) = 0.$$
We obtain zero as required. On the other hand with $n$ odd we find
$$- (-1)^n \frac{1}{n} [n^{-s}] \left(1-\frac{2}{2^s}\right) \zeta(s-1)
= - (-1)^n \frac{1}{n} [n^{-s}] \zeta(s-1)
\\ = - (-1)^n \frac{1}{n} \times n = 1,$$
again as required. This concludes the sanity check. and indeed the
entire argument.
Remark. Some of this material is duplicate where I have not
found the links however.
Addendum. The sum can be simplified. Starting with
$$\sum_{p=1}^{n-1} [[n/\gcd(p, n)|k]]
\times {\gcd(p,n) \choose k \gcd(p,n)/n} (-1)^{k\gcd(p,n)/n}.$$
With the GCD being $d$ we get
$$\sum_{d|n \wedge d \lt n}
\sum_{\gcd(p,n) = d}
[[n/d|k]]
\times {d \choose kd/n} (-1)^{kd/n}.$$
where we retain $1\le p\le n-1$. This is
$$\sum_{d|n \wedge d \lt n}
\sum_{\gcd(q,n/d) = 1}
[[n/d|k]]
\times {d \choose kd/n} (-1)^{kd/n}
\\ = \sum_{f|k \wedge f\gt 1} \sum_{d|n \wedge d \lt n}
\sum_{\gcd(q,n/d) = 1, n/d=f}
{d \choose kd/n} (-1)^{kd/n}$$
Here we have $1\le qd\le n-1$ but since $d\lt n$ we may actually use
$1\le qd\le n$ to obtain (this is because $\gcd(n/d,n/d) = n/d \gt 1$)
$$\sum_{d|n \wedge d \lt n \wedge n/d|k}
\sum_{\gcd(q,n/d) = 1}
{d \choose kd/n} (-1)^{kd/n}
= \sum_{d|n \wedge d \lt n \wedge n/d|k}
\varphi(n/d) {d \choose kd/n} (-1)^{kd/n}
\\ = \sum_{d|n \wedge d \gt 1 \wedge d|k}
\varphi(d) {n/d \choose k/d} (-1)^{k/d}
= \sum_{d|\gcd(n,k) \wedge d \gt 1}
\varphi(d) {n/d \choose k/d} (-1)^{k/d}.$$
Merge this into the boxed formula to get
$$\frac{1}{n} +
(-1)^k {n\choose k}^{-1}
\frac{1}{n}
\sum_{d|\gcd(n,k) \wedge d \gt 1}
\varphi(d) {n/d \choose k/d} (-1)^{k/d}$$
or alternatively
$$\bbox[5px,border:2px solid #00A000]{
(-1)^k {n\choose k}^{-1}
\frac{1}{n}
\sum_{d|\gcd(n,k)}
\varphi(d) {n/d \choose k/d} (-1)^{k/d}.}$$