If $\lim_{n\to\infty} x_n=L$ and $y_n=\dfrac{x_1+x_2+x_3+\cdots+x_n}{n}$, why would $\lim_{n\to\infty} y_n=L$ ?
I've been trying to usee Squeeze theorem but it doesn't work. Any other way to prove/derive the above claim?
P.S: $\{x_n\}$ is a sequence
If $\lim_{n\to\infty} x_n=L$ and $y_n=\dfrac{x_1+x_2+x_3+\cdots+x_n}{n}$, why would $\lim_{n\to\infty} y_n=L$ ?
I've been trying to usee Squeeze theorem but it doesn't work. Any other way to prove/derive the above claim?
P.S: $\{x_n\}$ is a sequence
Let $\epsilon >0$
We have that $\lim_{n \rightarrow \infty}x_n=A$ thus $\exists n_1 \in \mathbb{N}$ such that $|x_n-A|< \epsilon, \forall n \geqslant n_1$
$|\frac{x_1+...+x_n}{n}-A|=|\frac{(x_1-A)+...(x_{n_1-1}-A)}{n}+\frac{(x_{n_1}-A)+...+(x_n-A)}{n}| \leqslant \frac{|x_1-A|+...+|x_{n_1-1}-A|}{n}+ \frac{|x_{n_1}-A|+...+|x_n-A|}{n}$
Exists $n_2 \in \mathbb{N}$ such that $$\frac{|x_1-A|+...+|x_{n_1-1}-A|}{n}< \epsilon, \forall n \geqslant n_2$$
Now for $n \geqslant n_0= \max\{n_1,n_2\}$
$|\frac{x_1+...+x_n}{n}-A| \leqslant \epsilon+ \frac{(n-n_1) }{n}\epsilon<2 \epsilon $
You can use the Stolz–Cesàro theorem:
\begin{align}\lim_{n\to\infty} \frac{x_1+x_2+\cdots+x_n}{n} &= \lim_{n\to\infty} \frac{(x_1+x_2+\cdots+x_n + x_{n+1}) - (x_1+x_2+\cdots+x_n)}{(n+1) - n} \\ &= \lim_{n\to\infty} \frac{x_{n+1}}{1} \\ &= \lim_{n\to\infty} x_{n+1} \\ &= L \end{align}
As pointed out in the comments, using the Stolz–Cesàro theorem is an overkill in this situation, so here is an elementary proof:
The sequence $(x_n)_{n=1}^\infty$ is convergent, so it is bounded: there exists $M > 0$ such that $|x_n|\leq M$, $\forall n \in \mathbb{N}$.
Let $\varepsilon > 0$. By the definition of limit there exists $n_1\in\mathbb{N}$ such that $n \geq n_1 \implies |x_n - L|<\frac{\varepsilon}{2}$. Let $n_2 \in \mathbb{N}$ be large enough so that $\frac{n_1(M+|L|)}{n} < \frac{\varepsilon}{2}$.
Take $n \geq max\{n_1,n_2\}$:
\begin{align} \left|\frac{1}{n}\sum_{i=1}^n x_i - L\right| &= \left|\frac{1}{n}\sum_{i=1}^{n_1} (x_i - L) + \frac{1}{n}\sum_{n_1+1=1}^n (x_i - L)\right| \\ &\leq \frac{1}{n}\sum_{i=1}^{n_1} (\underbrace{|x_i|}_{\leq M} + |L|) + \frac{1}{n}\sum_{i=n_1+1}^n \underbrace{|x_i - L|}_{<\frac{\varepsilon}{2}}\\ &< \frac{n_1(M + |L|)}{n} + \frac{n-n_1}{n}\frac{\varepsilon}{2} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{align}
Thus:
$$\lim_{n\to\infty} \frac{1}{n}\sum_{i=1}^n x_i = L$$