This amounts to ask whether $B(H)$ is sot-separable.
Fix an orthonormal basis $\{e_n\}_{n\in\mathbb N}$. Let $P_n$ be the orthogonal projection onto the span of $\{e_1,\ldots,e_n\}$. Then $P_n\to I$ sot, and since $\|P_n\|\leq1$ for all $n$, it follows that $P_nTP_n\to T$ for all $T\in B(H)$.
It is also clear that $P_nTP_n$ has rank at most $n$.
If we write $\{E_{kj}\}$ for the matrix units associated with the basis $\{e_n\}$ (i.e., $E_{kj}$ is the operator $E_{kj}x=\langle x,e_j\rangle\,e_k$), then
$$
P_nTP_n\in\text{span}\,\{E_{kj}:\ k,j\in\{1,\ldots,n\}.
$$
Now the set $\text{span}_{\mathbb Q}\,\{E_{kj}:\ k,j\in\{1,\ldots,n\}$ is countable and, for any $T\in B(H)$,
$$
P_nTP_n\in\overline{\text{span}_{\mathbb Q}\,\{E_{kj}:\ k,j\in\{1,\ldots,n\}}.
$$
It follows that
$$
\text{span}_{\mathbb Q}\,\{E_{kj}:\ k,j\in\mathbb N\}
$$
is countable and sot-dense in $B(H)$.