Let $X$ and $Y$ be topological spaces and let $A \subseteq X$ be a subspace of $X$. Suppose $A$ is homeomorphic to some subspace $B \subseteq Y$ of $Y$. Let $f$ explicitly denote this homeomorphism.
If $f : A \to B$ is a homeomorphism, does $f$ extend to a homeomorphism between $\text{Cl}_X(A)$ and $\text{Cl}_Y(B)$, i.e does there exist a $g : Cl_X(A) \to Cl_Y(B)$, such that $g|_{A} = f$.
More generally if $A$ and $B$ are homeomorphic, does that imply that $Cl_X(A)$ and $Cl_Y(B)$ are homeomorphic?
If $X$ and $Y$ are homeormorphic, then this is true, since it is a well known-theorem that $f[Cl_X(A)] = Cl_Y(f[A] = B)$, if $f : X \to Y$ is a homeomorphism.
However I can't seem to come up with a counterexample for my question, since I assume the implication is false.
Edit : I know a counterexample that comes from CW Complexes, where if $(X, \xi)$ is a CW-Complex, then $\xi$ is a collection of open cells $e$, which are topological spaces homeomorphic to $\mathbb{B}^n$ the open unit ball in $\mathbb{R}^n$. Each $e \subseteq X$ is a subspace of a haursdoff space $X$.
Also a closed cell $\bar{e}$ is a topological space homeomorphic to the closed unit ball $\mathbb{\bar{B}}^n \subseteq \mathbb{R}^n$
Now in this example $Y = \mathbb{R}^n$. It is also known that for any $e \in \xi$, $Cl_X(e) \neq \bar{e} \cong {\mathbb{\bar{B}}^n} = Cl_Y(\mathbb{{B}}^n \cong e) $
Hence $e$ and $\mathbb{B}^n$ are homeomorphic, however $Cl_X(e)$ is not homeomorphic to $Cl_Y(\mathbb{B}^n) = \mathbb{\bar{B}}^n$, since $Cl_X(e) \neq \bar{e}$
But using the above example feels like bringing a gun to a knife fight, are there any simpler counterexamples?