Let $A_1=P, A_2=Q, B_1=H, B_2=K$.
Then we have
$$\scriptsize\begin{align}
&\;\;\;\;(A_1\quad A_2)\left(B_1\atop B_2\right)\\\\
&=(P\quad Q)\;\;\;\left(H\atop K\right)\\\\
&=\left(\begin{array}{rrr:rrr}
p_{1,1}&p_{1,2}&\cdots \;p_{1,s}&q_{1,1}&q_{1,2}&\cdots \;q_{1,n-s} \\
p_{2,1}&p_{2,2}&\cdots \;p_{2,s}&q_{2,1}&q_{2,2}&\cdots \;q_{2,n-s} \\
&\vdots&&&\vdots\\
p_{m,1}&p_{m,2}&\cdots\; p_{m,s}&q_{m,1}&q_{m,2}&\cdots \;q_{m,n-s}
\end{array}\right)
\left(\begin{array}{rrr}
h_{1,1}&h_{1,2}&\cdots \; h_{1,r}\\
h_{2,1}&h_{2,2}&\cdots \; h_{2,r}\\
&\vdots \\
h_{s,1}&h_{s,2}&\cdots \; h_{s,r}\\
\hdashline
k_{1,1}&k_{1,2}&\cdots \; k_{1,r}\\
k_{2,1}&k_{2,2}&\cdots \; k_{2,r}\\
&\vdots \\
k_{n-s,1}&k_{n-s,2}&\cdots \; k_{n-s,r}\\
\end{array}\right)\\\\
&=\underbrace{\left.\left(\begin{array}
.\boxed{\sum_{i=1}^s p_{1,i}h_{i,1}+\sum_{j=1}^{n-s}q_{1,j}k_{j,1}}
&\boxed{\sum_{i=1}^s p_{1,i}h_{i,2}+\sum_{j=1}^{n-s}q_{1,j}k_{j,2}}
&\cdots
&\boxed{\sum_{i=1}^s p_{1,i}h_{i,r}+\sum_{j=1}^{n-s}q_{1,j}k_{j,r}}\\
\boxed{\sum_{i=1}^s p_{2,i}h_{i,1}+\sum_{j=1}^{n-s}q_{2,j}k_{j,1}}
&\boxed{\sum_{i=1}^s p_{2,i}h_{i,2}+\sum_{j=1}^{n-s}q_{2,j}k_{j,2}}
&\cdots
&\boxed{\sum_{i=1}^s p_{2,i}h_{i,r}+\sum_{j=1}^{n-s}q_{2,j}k_{j,r}}\\
\qquad\qquad\vdots&\qquad\qquad\vdots&\cdots &\qquad\qquad\vdots\\
\boxed{\sum_{i=1}^s p_{m,i}h_{i,1}+\sum_{j=1}^{n-s}q_{m,j}k_{j,1}}
&\boxed{\sum_{i=1}^s p_{m,i}h_{i,2}+\sum_{j=1}^{n-s}q_{m,j}k_{j,2}}
&\cdots
&\boxed{\sum_{i=1}^s p_{m,i}h_{i,r}+\sum_{j=1}^{n-s}q_{m,j}k_{j,r}}\\
\end{array}\right)\;\right\}}_{r\text{ columns}} \,m\text{ rows}\\\\
&=\left(\begin{array}
.\boxed{\sum_{i=1}^s p_{1,i}h_{i,1}}
&\boxed{\sum_{i=1}^s p_{1,i}h_{i,2}}
&\cdots
&\boxed{\sum_{i=1}^s p_{1,i}h_{i,r}}\\
\boxed{\sum_{i=1}^s p_{2,i}h_{i,1}}
&\boxed{\sum_{i=1}^s p_{2,i}h_{i,2}}
&\cdots
&\boxed{\sum_{i=1}^s p_{2,i}h_{i,r}}\\
\;\quad\vdots&\;\quad\vdots&\cdots &\;\quad\vdots\\
\boxed{\sum_{i=1}^s p_{m,i}h_{i,1}}
&\boxed{\sum_{i=1}^s p_{m,i}h_{i,2}}
&\cdots
&\boxed{\sum_{i=1}^s p_{m,i}h_{i,r}}\\
\end{array}\right)\; \,\longleftarrow PH\\\\
&\; +\left(\begin{array}
.\boxed{\sum_{j=1}^{n-s}q_{1,j}k_{j,1}}
&\boxed{\sum_{j=1}^{n-s}q_{1,j}k_{j,2}}
&\cdots
&\boxed{\sum_{j=1}^{n-s}q_{1,j}k_{j,r}}\\
\boxed{\sum_{j=1}^{n-s}q_{2,j}k_{j,1}}
&\boxed{\sum_{j=1}^{n-s}q_{2,j}k_{j,2}}
&\cdots
&\boxed{\sum_{j=1}^{n-s}q_{2,j}k_{j,r}}\\
\;\quad\vdots&\;\quad\vdots&\cdots &\;\quad\vdots\\
\boxed{\sum_{j=1}^{n-s}q_{m,j}k_{j,1}}
&\boxed{\sum_{j=1}^{n-s}q_{m,j}k_{j,2}}
&\cdots
&\boxed{\sum_{j=1}^{n-s}q_{m,j}k_{j,r}}\\
\end{array}\right)\; \,\longleftarrow QK\\\\
&=PH+QK\\\\
&=A_1B_1+A_2B_2
\end{align}$$