I tried doing integration by parts on this integral: $$I = \int \frac{1}{x\log{x}}dx$$ With these substitutions: $$u = \frac{1}{\log{x}} \rightarrow du = -\frac{1}{x\log^2{x}}$$ $$dv = \frac{1}{x}dx \rightarrow v=\log{x}$$
We get: $$\begin{align} I &= uv - \int vdu \\ I &= \log{x}\frac{1}{\log{x}} - \int \log{x}(-\frac{1}{x\log^2x})dx \\ I &= 1 + \int \frac{1}{x\log{x}}dx\\ I &= 1 + I\\ 0 &= 1 \end{align} $$ How does this happen?