If $(A \rightarrow B) \ \wedge \ (B \rightarrow C) \ \wedge \ (C \rightarrow A)$ does $(A \leftrightarrow B) \ \wedge \ (B\leftrightarrow C)$ hold? And if so, what is this called?
Edit:Fixed the logical symbols and made it more clear
If $(A \rightarrow B) \ \wedge \ (B \rightarrow C) \ \wedge \ (C \rightarrow A)$ does $(A \leftrightarrow B) \ \wedge \ (B\leftrightarrow C)$ hold? And if so, what is this called?
Edit:Fixed the logical symbols and made it more clear
Because the implication is transitive (syllogism rule), then (for instance), $B\implies C\implies A$, so $B\implies A$ and finally $B\iff A$. I don't know the name of this rule, maybe it could be also called syllogism. However, it is used in many proofs of the series of equivalent conditions.
Yes, this is true. I've usually seen this called "circular implication", though it is a bit unfortunate that sounds like "circular reasoning". A similar wording with less baggage is "cyclic implication". I give a machine-checked formal proof of a (generalization of) this statement here: https://math.stackexchange.com/a/2350102/305738
Yes. You can use the Consensus Theorem:
Consensus Theorem
$(P \lor Q) \land (\neg Q \lor R) \Leftrightarrow (P \lor Q) \land (\neg Q \lor R) \land (P \lor R)$
Applied to what you have:
$(A \rightarrow B) \land (B \rightarrow C) \land (C \rightarrow A) \Leftrightarrow \text{ (Implication)}$
$(\neg A \lor B) \land (\neg B \lor C) \land (\neg C \lor A) \Leftrightarrow \text{ ( Consensus x 3)}$
$(\neg A \lor B) \land (\neg B \lor C) \land (\neg C \lor A) \land (\neg A \lor C) \land (\neg B \lor A) \land (\neg C \lor B) \Leftrightarrow \text{ (Implication)}$
$(A \rightarrow B) \land (B \rightarrow C) \land (C \rightarrow A) \land (A \rightarrow C) \land (B \rightarrow A) \land (C \rightarrow B) \Leftrightarrow \text{ (Equivalence)}$
$(A \leftrightarrow B) \land (B \leftrightarrow C) \land (C \leftrightarrow A)$