At least for the time being, this is probaly not an answer.
Sooner or later, you will learn about elliptic integrals and, assuming $\epsilon >0$,
$$\int\dfrac {dx} {\sqrt{\sin^2(x)+\epsilon \cos^2(x)}}=\frac{1}{\sqrt{\epsilon }}F\left(x\left|\frac{\epsilon -1}{\epsilon }\right.\right)$$ where appears the elliptic integral of the first kind. This makes
$$I=\int_0^{\pi/2}\dfrac {dx} {\sqrt{\sin^2(x)+\epsilon \cos^2(x)}}=\frac{1}{\sqrt{\epsilon }}K\left(\frac{\epsilon -1}{\epsilon }\right)$$ where appears the complete elliptic integral of the first kind.
Now, you could use the expansion
$$K\left(\frac{\epsilon -1}{\epsilon }\right)=\sqrt{\epsilon } \left(2 \log (2)-\frac{\log (\epsilon )}{2}\right)+\frac{1}{8}
\epsilon ^{3/2} (4 \log (2)-\log (\epsilon )-2)+O\left(\epsilon ^{5/2}\right)$$ which makes $$I=\left(2 \log (2)-\frac{\log (\epsilon )}{2}\right)+\frac{1}{8} \epsilon (4 \log (2)-\log
(\epsilon )-2)+O\left(\epsilon ^2\right)$$ which clearly shows the limit and how it is approached.
Let $\epsilon=10^{-k}$ and compare the exact value with the above approximation
$$\left(
\begin{array}{ccc}
k & \text{exact} & \text{approximation} \\
0 & 1.570796327 & 1.482867951 \\
1 & 2.578092113 & 2.576026580 \\
2 & 3.695637363 & 3.695601653 \\
3 & 4.841132561 & 4.841132044 \\
4 & 5.991589341 & 5.991589334 \\
5 & 7.142772451 & 7.142772450 \\
6 & 8.294051464 & 8.294051464
\end{array}
\right)$$