Suppose that, $a_n\to \ell\neq 0$ is a converging sequence of non vanishing` complex numbers and $\{\lambda_n\}$ is a sequence of positifs real numbers such that $\sum\limits_{k=0}^{\infty}\lambda_k = \infty$
Then, show that, $$\lim_{n\to\infty}\left(\sum_\limits{k=0}^{n}\lambda_k\right)\left(\sum_\limits{k=0}^{n}\frac{\lambda_k }{a_k}\right)^{-1}= \ell =\lim_{n\to\infty} a_n$$
I have no clue on how to start.