Suppose that $a_n\to \ell\neq 0$ is a converging sequence of positive real numbers and $\{\lambda_n\}$ is a sequence of positive real numbers such that $\sum\limits_{k=0}^{\infty}\lambda_k = \infty$.
Then show that, $$\lim_{n\to\infty}\sqrt[\sum_\limits{k=0}^{n}\lambda_k]{\prod_\limits{k=0}^{n}a_k^{\lambda_k} }= \ell =\lim_{n\to\infty} a_n$$
I have no clue on how to start.