Alternatively: let $a = x+y, b = y+z, c = z+x$, then $a,b,c$ are the lengths of the sides of a... triangle From this: $x = (x+y+z) - (y+z) = \dfrac{a+b+c}{2} - b = \dfrac{a+c-b}{2}, y = \dfrac{a+b+c}{2} - c = \dfrac{a+b-c}{2}, z = \dfrac{a+b+c}{2}-a = \dfrac{b+c-a}{2}\implies LHS = \dfrac{a+c-b}{2a}+\dfrac{a+b-c}{2b}+\dfrac{b+c-a}{2c}\le 2=RHS\iff \dfrac{c-b}{a}+\dfrac{a-c}{b}+\dfrac{b-a}{c}\le 1$. Assume $0 < a \le b\le c$, then observe: $\dfrac{b-a}{c} < \dfrac{c}{c} = 1$, and $\dfrac{c-b}{a}+\dfrac{a-c}{b} = \dfrac{bc-b^2+a^2-ac}{ab}= \dfrac{(b-a)(c-a-b)}{ab}\le 0$ since $a \le b, c < a+b$. Thus $\dfrac{c-b}{a}+\dfrac{a-c}{b}+\dfrac{b-a}{c} < 1$, and the inequality is proven...