The central function for the development (which I prefer here) of all integrals mentioned above into products of the type of your example is the Digamma function $\,\psi\,$ .
Literature: Any useful formula collection, which contains the Digamma function; e.g. please look at https://en.wikipedia.org/wiki/Digamma_function , the relevant sections are Taylor series, series formula, reflection formula and Recurrence formula and characterization .
In part $\,(C)\,$ of my answer I've listed the formulas which I've used here.
$(A)\,$: $\enspace$ About the given product.
Your case comes from
$\displaystyle f(z):=\sum\limits_{k=0}^\infty \frac{\ln(1+\frac{z}{2k+1})}{2k+1} = \int\limits_0^z \frac{\gamma + \psi(1+x)}{x}dx - \frac{1}{2}\int\limits_0^{z/2} \frac{\gamma + \psi(1+x)}{x}dx $
using $\,\displaystyle z=-\frac{1}{2}\,$ and $\,\displaystyle z=+\frac{1}{2}\,$ .
It’s
$\displaystyle \sum\limits_{k=0}^\infty \frac{\ln(4k+3)-\ln(4k+1)}{4k+2} = \frac{1}{2} \left(f(\frac{1}{2})-f(-\frac{1}{2})\right) = $
$\displaystyle =\frac{1}{2}\int\limits_0^{1/2} \frac{\psi(1+x)-\psi(1-x)}{x}dx - \frac{1}{4}\int\limits_0^{1/4} \frac{\psi(1+x)-\psi(1-x)}{x}dx $
$\displaystyle = \frac{\pi}{4} \int\limits_0^{1/4}\frac{\cot(\pi x)-2\cot(2\pi x)}{x} dx = \frac{\pi}{4} \int\limits_0^{\pi/4}\frac{\tan x}{x} dx \,$ .
One type of generalization of the initial product is with $\,|z|<1\,$ :
$\displaystyle \sum\limits_{k=0}^\infty \frac{\ln(2k+1+z)-\ln(2k+1-z)}{2k+1} = \frac{\pi}{2}\int\limits_0^{z\pi/2}\frac{\tan x}{x} dx$
Note: The derivation with respect to $\,z\,$ shows us an alternative way to the result.
$(B)\,$: $\enspace$ Example for the 'supplementary question'.
We can take the calculations of $(A)$, modify and reverse them.
$\displaystyle g(z):=\sum\limits_{k=1}^\infty \frac{\ln(1+\frac{z}{k})}{k^2} = -\int\limits_0^z \frac{\psi(1+x)+\gamma-\zeta(2)x}{x^2}dx $
With
$\displaystyle \frac{\pi^2}{4} \int\limits_0^{\pi/4} \frac{\tan^2 x}{x}dx = \pi - \frac{\pi^2}{4} + \frac{\pi^2}{4} \int\limits_0^{\pi/4} \frac{\tan x - x}{x^2}dx $
and
$\displaystyle \frac{\pi^2}{4} \int\limits_0^{\pi/4} \frac{\tan x - x}{x^2}dx =$
$\displaystyle =\frac{1}{4} \int\limits_0^{1/4} \frac{1 - \frac{1}{3} (2\pi x)^2 - 2\pi x \cot(2\pi x)}{x^3}dx - \frac{1}{4} \int\limits_0^{1/4} \frac{1 - \frac{1}{3} (\pi x)^2 - \pi x \cot(\pi x)}{x^3}dx $
$\displaystyle = \int\limits_0^{1/2} \frac{- \frac{1}{3} \pi^2 x - \psi(1-x) + \psi(1+x)}{x^2}dx - \frac{1}{4} \int\limits_0^{1/4} \frac{- \frac{1}{3} \pi^2 x - \psi(1-x) + \psi(1+x)}{x^2}dx $
$\displaystyle =\frac{1}{4} \left(g(\frac{1}{4})+g(-\frac{1}{4})\right) - \left(g(\frac{1}{2})+g(-\frac{1}{2})\right) $
we get
$\displaystyle \frac{\pi^2}{4} \int\limits_0^{\pi/4} \frac{\tan^2 x}{x}dx = \pi - \frac{\pi^2}{4} +\frac{\pi^2}{6}\ln 2 + \frac{1}{4} \sum\limits_{k=1}^\infty \frac{1}{k^2}\ln\frac{k^6 ((4k)^2-1)}{((2k)^2-1)^4}$
and with that a product.
Note:
$\displaystyle \int\limits_0^z \frac{\tan^3 x}{x}dx = \frac{\tan^2 z}{2z} + \frac{\tan z - z}{2 z^2} - \int\limits_0^z \frac{\tan x}{x}dx + \int\limits_0^z \frac{\tan x - x}{x^3}dx $
$\displaystyle \int\limits_0^z \frac{\tan^4 x}{x}dx =\frac{\tan^3 z}{3z} +\frac{\tan^2 z - z^2}{6 z^2} - \frac{\tan z - z}{z} + \frac{\tan z - z - \frac{1}{3}z^3}{3 z^3} $
$\hspace{3cm}\displaystyle -\frac{4}{3}\int\limits_0^z \frac{\tan x - x}{x^2}dx + \int\limits_0^z \frac{\tan x - x - \frac{1}{3}x^3}{x^4}dx $
So, for the second integral of the 'supplementary question' it's necessary to evaluate
$\displaystyle\int\limits_0^{\pi/4}\frac{\tan x -x}{x^3}dx \,$ and for the third integral $\,\displaystyle\int\limits_0^{\pi/4} \frac{\tan x - x - \frac{1}{3}x^3}{x^4}dx $
which can be done with the same method as used in $(A)$ and $(B)$ .
And so on ... .
$(C)\,$: $\enspace$ Used formulas.
$\displaystyle \psi(1+x) = \psi(x) + \frac{1}{x}\,$ , $\enspace \psi(1-x) - \psi(x) = \pi \cot(\pi x)\,$ , $\enspace \tan x = \cot x - 2 \cot(2x)$
$\displaystyle \gamma+\psi(1+x) =\sum\limits_{n=1}^\infty (-1)^{n-1} \zeta(n+1) x^n \,$ , $\enspace \displaystyle \ln(1+x)=\sum\limits_{n=1}^\infty (-1)^{n-1} \frac{x^n}{n} $
$\displaystyle \cot x = \frac{1}{x} + \sum\limits_{n=1}^\infty \frac{(-4)^n B_{2n}}{(2n)!}x^{2n-1}\enspace$ where $\,B_k\,$ is defined by $\enspace\displaystyle \frac{x}{e^x - 1} = \sum\limits_{k=0}^\infty \frac{x^k}{k!}B_k $
Potentially Related (in the sense of an integral of trig and log related functions):
Define $$\mathrm{L}(x)=\frac1\pi\int_0^{\pi x}\log\sin t,dt$$ as well as $j(x)=x^x$. See here for a proof that $$\prod_{n=1}^{\infty}\frac{j(n+x)}{(en)^{2x}j(n-x)}=\left(\frac{e}{\pi x}\right)^x\exp\mathrm{L}(x)$$ among many other related identities.
– clathratus Mar 24 '19 at 02:52