30

Recently I rediscovered by a new method a family of infinite products I obtained years ago, and one of the examples you may find below,

$$\left(\frac{3}{1}\right)^{1/2}\cdot\left(\frac{7}{5}\right)^{1/6}\cdot \left(\frac{11}{9}\right)^{1/10}\cdot \left(\frac{15}{13}\right)^{1/14}\cdots=\exp\bigg(\frac{\pi}{4}\int_0^{\pi/4}\frac{\tan(x)}{x}\textrm{d}{x}\biggr).$$

I wonder if such results are known in the mathematical literature, or anything similar to the example stated above. If yes, I'd be glad to receive information about the related literature.

Supplementary question: Find the infinite product representations of $$\exp\bigg(\frac{\pi}{4}\int_0^{\pi/4}\frac{\tan^2(x)}{x}\textrm{d}{x}\biggr), \ \exp\bigg(\frac{\pi}{4}\int_0^{\pi/4}\frac{\tan^3(x)}{x}\textrm{d}{x}\biggr), \ \exp\bigg(\frac{\pi}{4}\int_0^{\pi/4}\frac{\tan^4(x)}{x}\textrm{d}{x}\biggr)$$

user 1591719
  • 44,216
  • 12
  • 105
  • 255
  • 5
    What do you mean by the infinite product representations of $\ldots$ ? They are just three numbers, I guess they admit a lot of representations as infinite products. How a canonical infinite product is defined here? – Jack D'Aurizio Sep 26 '17 at 16:23
  • Let $a_0,a_1,a_2,\ldots,a_k,\ldots $ a a.p. $a_k+a_0+k\cdot r$. $\sigma(0)=1,\sigma(1)=3,\sigma(2)=5,\ldots , \sigma(k)=1+k\cdot 2$ Then $\prod_{k=0}{\infty}(\frac{a_{\sigma(k+1}}{a_{\sigma(k)}})^{1/\sigma(k}+1}}=?$ – Elias Costa Sep 27 '17 at 11:45
  • @JackD'Aurizio I had in mind very similar ways of posing the products as in the first example, but avoided on purpose to give more details. I'll possibly add my solution in the future. – user 1591719 Sep 28 '17 at 13:53
  • similar http://home.earthlink.net/~jsondow/ – gymbvghjkgkjkhgfkl Oct 02 '17 at 21:19
  • @123 : Not similar but somehow the same category. There are indeed a lot of number relations. (Srinivasa Ramanujan had shown that more than hundred years ago.) – user90369 Oct 03 '17 at 14:17
  • @123 no, it's nothing similar there. – user 1591719 Oct 11 '17 at 06:51
  • @user90369 that part of your answer, "Literature: Any useful formula collection, which contains the Digamma function" might be a misleading one as long as you gave absolutely no source for such identities. Please show precisely in the mathematical literature where such identities are met. – user 1591719 Oct 11 '17 at 06:51
  • Sorry for the inconvenience, I've add what I've used of the Digamma function. :-) – user90369 Oct 11 '17 at 09:15
  • I see now that my answer was better suited as a comment.

    Potentially Related (in the sense of an integral of trig and log related functions):

    Define $$\mathrm{L}(x)=\frac1\pi\int_0^{\pi x}\log\sin t,dt$$ as well as $j(x)=x^x$. See here for a proof that $$\prod_{n=1}^{\infty}\frac{j(n+x)}{(en)^{2x}j(n-x)}=\left(\frac{e}{\pi x}\right)^x\exp\mathrm{L}(x)$$ among many other related identities.

    – clathratus Mar 24 '19 at 02:52

1 Answers1

22

The central function for the development (which I prefer here) of all integrals mentioned above into products of the type of your example is the Digamma function $\,\psi\,$ .

Literature: Any useful formula collection, which contains the Digamma function; e.g. please look at https://en.wikipedia.org/wiki/Digamma_function , the relevant sections are Taylor series, series formula, reflection formula and Recurrence formula and characterization .

In part $\,(C)\,$ of my answer I've listed the formulas which I've used here.


$(A)\,$: $\enspace$ About the given product.

Your case comes from

$\displaystyle f(z):=\sum\limits_{k=0}^\infty \frac{\ln(1+\frac{z}{2k+1})}{2k+1} = \int\limits_0^z \frac{\gamma + \psi(1+x)}{x}dx - \frac{1}{2}\int\limits_0^{z/2} \frac{\gamma + \psi(1+x)}{x}dx $

using $\,\displaystyle z=-\frac{1}{2}\,$ and $\,\displaystyle z=+\frac{1}{2}\,$ .

It’s

$\displaystyle \sum\limits_{k=0}^\infty \frac{\ln(4k+3)-\ln(4k+1)}{4k+2} = \frac{1}{2} \left(f(\frac{1}{2})-f(-\frac{1}{2})\right) = $

$\displaystyle =\frac{1}{2}\int\limits_0^{1/2} \frac{\psi(1+x)-\psi(1-x)}{x}dx - \frac{1}{4}\int\limits_0^{1/4} \frac{\psi(1+x)-\psi(1-x)}{x}dx $

$\displaystyle = \frac{\pi}{4} \int\limits_0^{1/4}\frac{\cot(\pi x)-2\cot(2\pi x)}{x} dx = \frac{\pi}{4} \int\limits_0^{\pi/4}\frac{\tan x}{x} dx \,$ .

One type of generalization of the initial product is with $\,|z|<1\,$ :

$\displaystyle \sum\limits_{k=0}^\infty \frac{\ln(2k+1+z)-\ln(2k+1-z)}{2k+1} = \frac{\pi}{2}\int\limits_0^{z\pi/2}\frac{\tan x}{x} dx$

Note: The derivation with respect to $\,z\,$ shows us an alternative way to the result.


$(B)\,$: $\enspace$ Example for the 'supplementary question'.

We can take the calculations of $(A)$, modify and reverse them.

$\displaystyle g(z):=\sum\limits_{k=1}^\infty \frac{\ln(1+\frac{z}{k})}{k^2} = -\int\limits_0^z \frac{\psi(1+x)+\gamma-\zeta(2)x}{x^2}dx $

With

$\displaystyle \frac{\pi^2}{4} \int\limits_0^{\pi/4} \frac{\tan^2 x}{x}dx = \pi - \frac{\pi^2}{4} + \frac{\pi^2}{4} \int\limits_0^{\pi/4} \frac{\tan x - x}{x^2}dx $

and

$\displaystyle \frac{\pi^2}{4} \int\limits_0^{\pi/4} \frac{\tan x - x}{x^2}dx =$

$\displaystyle =\frac{1}{4} \int\limits_0^{1/4} \frac{1 - \frac{1}{3} (2\pi x)^2 - 2\pi x \cot(2\pi x)}{x^3}dx - \frac{1}{4} \int\limits_0^{1/4} \frac{1 - \frac{1}{3} (\pi x)^2 - \pi x \cot(\pi x)}{x^3}dx $

$\displaystyle = \int\limits_0^{1/2} \frac{- \frac{1}{3} \pi^2 x - \psi(1-x) + \psi(1+x)}{x^2}dx - \frac{1}{4} \int\limits_0^{1/4} \frac{- \frac{1}{3} \pi^2 x - \psi(1-x) + \psi(1+x)}{x^2}dx $

$\displaystyle =\frac{1}{4} \left(g(\frac{1}{4})+g(-\frac{1}{4})\right) - \left(g(\frac{1}{2})+g(-\frac{1}{2})\right) $

we get

$\displaystyle \frac{\pi^2}{4} \int\limits_0^{\pi/4} \frac{\tan^2 x}{x}dx = \pi - \frac{\pi^2}{4} +\frac{\pi^2}{6}\ln 2 + \frac{1}{4} \sum\limits_{k=1}^\infty \frac{1}{k^2}\ln\frac{k^6 ((4k)^2-1)}{((2k)^2-1)^4}$

and with that a product.

Note:

$\displaystyle \int\limits_0^z \frac{\tan^3 x}{x}dx = \frac{\tan^2 z}{2z} + \frac{\tan z - z}{2 z^2} - \int\limits_0^z \frac{\tan x}{x}dx + \int\limits_0^z \frac{\tan x - x}{x^3}dx $

$\displaystyle \int\limits_0^z \frac{\tan^4 x}{x}dx =\frac{\tan^3 z}{3z} +\frac{\tan^2 z - z^2}{6 z^2} - \frac{\tan z - z}{z} + \frac{\tan z - z - \frac{1}{3}z^3}{3 z^3} $ $\hspace{3cm}\displaystyle -\frac{4}{3}\int\limits_0^z \frac{\tan x - x}{x^2}dx + \int\limits_0^z \frac{\tan x - x - \frac{1}{3}x^3}{x^4}dx $

So, for the second integral of the 'supplementary question' it's necessary to evaluate

$\displaystyle\int\limits_0^{\pi/4}\frac{\tan x -x}{x^3}dx \,$ and for the third integral $\,\displaystyle\int\limits_0^{\pi/4} \frac{\tan x - x - \frac{1}{3}x^3}{x^4}dx $

which can be done with the same method as used in $(A)$ and $(B)$ .

And so on ... .


$(C)\,$: $\enspace$ Used formulas.

$\displaystyle \psi(1+x) = \psi(x) + \frac{1}{x}\,$ , $\enspace \psi(1-x) - \psi(x) = \pi \cot(\pi x)\,$ , $\enspace \tan x = \cot x - 2 \cot(2x)$

$\displaystyle \gamma+\psi(1+x) =\sum\limits_{n=1}^\infty (-1)^{n-1} \zeta(n+1) x^n \,$ , $\enspace \displaystyle \ln(1+x)=\sum\limits_{n=1}^\infty (-1)^{n-1} \frac{x^n}{n} $

$\displaystyle \cot x = \frac{1}{x} + \sum\limits_{n=1}^\infty \frac{(-4)^n B_{2n}}{(2n)!}x^{2n-1}\enspace$ where $\,B_k\,$ is defined by $\enspace\displaystyle \frac{x}{e^x - 1} = \sum\limits_{k=0}^\infty \frac{x^k}{k!}B_k $

user90369
  • 11,518