0

Can someone give me some hints for proving that $∀\varepsilon >0, x+\varepsilon > t\Rightarrow x\geq t$? I really don’t know how to start with. Thanks

  • Let $x+\epsilon>t$ for all $\epsilon >0$ but assume (for contradiction) that $x<t$. – AloneAndConfused Sep 28 '17 at 22:44
  • try this question: https://math.stackexchange.com/questions/438477/discrete-mathematics-x-leq-y-epsilon-implies-x-leq-y –  Sep 28 '17 at 23:29

1 Answers1

0

Hint:

Suppose $x < t$, then $t-x > 0$.

Siong Thye Goh
  • 149,520
  • 20
  • 88
  • 149