Prove that $\frac{a}{b+c} +\frac{b}{c+a}+\frac{c}{a+b} \ge \frac{3}{2}$ My steps
A= $\frac{a}{b+c}$,B= $\frac{b}{c+a}$ &C=$\frac{c}{a+b}$
A.M$\ge$H.M
$\frac{A+B+C}{3} \ge \frac{3ABC}{AB+BC+AC}$
I am struck after this step
${A+B+C} \ge \frac{9}{\frac{a}{c}+\frac{c}{a}+\frac{b}{a}+\frac{a}{b}+\frac{c}{b}+\frac{b}{c}}$